
SB2SL

User’s Guide

R2012b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

SB2SL User’s Guide
© COPYRIGHT 1998–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
October 1998 Online only Revised for Version 2 (Release 11)
January 1999 Online only Minor revision
September 1999 Online only Minor revision for Release 11.1
September 2000 Online only Minor revision for Release 12
June 2004 Online only Minor revision for Release 14
October 2004 Online only Minor revision for Release 14SP1
September 2005 Online only Minor revision for Release 14SP3
March 2006 Online only Minor revision for Release 2006a+
September 2006 Online only Minor revision for Release 2006b+
March 2007 Online only Minor revision for Release 2007a+
September 2007 Online only Revised for Version 2.7 (Release 2007b+)
March 2008 Online only Revised for Version 2.7.1 (Release 2008a+)
October 2008 Online only Revised for Version 2.7.2 (Release 2008b+)
March 2009 Online only Revised for Version 2.7.3 (Release 2009a+)
September 2009 Online only Revised for Version 2.7.4 (Release 2009b+)
March 2010 Online only Revised for Version 2.7.5 (Release 2010a+)
September 2010 Online only Revised for Version 2.7.6 (Release 2010b+)
April 2011 Online only Revised for Version 2.7.7 (Release 2011a+)
September 2011 Online only Revised for Version 2.7.8 (Release 2011b+)
March 2012 Online only Revised for Version 2.7.9 (Release 2012a+)
October 2012 Online only Revised for Version 2.7.10 (Release 2012b+)

Contents

Converting SystemBuild SuperBlocks to
Simulink Models

1
Introduction . 1-2
What Is SB2SL? . 1-2
Software Requirements . 1-3
Installation . 1-3

Optional Step to Convert to Simulink with SB2SL 1-4

Use SB2SL . 1-7
Prepare the Model for Conversion . 1-7
Start SB2SL . 1-7
Load a SystemBuild Model into SB2SL 1-8
Select SystemBuild SuperBlocks . 1-10
Select a SuperBlock Partition for Conversion 1-11
Set Translation Options . 1-12
Convert SuperBlocks to Simulink Models 1-22
Compile Converted BlockScript . 1-25
Save Translated Models and Data . 1-26
Generate a Report . 1-26

Conversion Strategies . 1-27
Componentization . 1-27
Improve Signal Line Wiring Results 1-29
Silence Unconnected Port Warnings 1-31
Migrate to a Native Simulink Modeling Style 1-32

Compatibility Between SystemBuild and Simulink
Software . 1-34
Introduction . 1-34
SB2SL Simulink Library . 1-34
Simulink Coder Software and Converted SB2SL Models . . 1-36
Referenced Models in Normal Mode with Converted SB2SL
Models . 1-37

v

Limitations . 1-38
Unsupported Conversions . 1-38
File Format Support . 1-39
Blocks Not Converted to Simulink Models 1-39
Suggestions for Handling UserCode Blocks 1-41

Function Reference

2

Conversions

A
MATRIXx Feature to MathWorks Feature Mapping . . . A-2
Corresponding SystemBuild and Simulink Blocks A-2
Transition Xmath to MATLAB . A-21
MATRIXx and MathWorks Product Table A-66

Index

vi Contents

1

Converting SystemBuild
SuperBlocks to Simulink
Models

• “Introduction” on page 1-2

• “Optional Step to Convert to Simulink with SB2SL” on page 1-4

• “Use SB2SL” on page 1-7

• “Conversion Strategies” on page 1-27

• “Compatibility Between SystemBuild and Simulink Software” on page 1-34

• “Limitations” on page 1-38

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Introduction

In this section...

“What Is SB2SL?” on page 1-2

“Software Requirements” on page 1-3

“Installation” on page 1-3

What Is SB2SL?
You can translate National Instruments® SystemBuild™ SuperBlocks to
Simulink® models using the SystemBuild to Simulink Translator (SB2SL).
This tool enables you to bring SystemBuild legacy models into Simulink
without recreating the original models. SB2SL reads a SystemBuild ASCII
format model file and creates a Simulink model that represents the structure
and hierarchy of the SystemBuild model.

For each SystemBuild SuperBlock in your model, you can:

• Create a Simulink model that represents the structure and hierarchy of
your SystemBuild model.

• Translate National Instruments Xmath® data from the SystemBuild model
into MATLAB® variables in the MATLAB workspace.

• Produce a report providing details of the translation.

SB2SL translation is performed on a block-by-block basis. Except for a few
blocks, all SystemBuild blocks are translated into either:

• Its Simulink counterpart

• A masked subsystem block containing the computational equivalent if no
Simulink counterpart exists

When SB2SL cannot translate a block, it inserts an appropriate blank
placeholder block in the resulting Simulink model.

Once you translate your SystemBuild model into the Simulink environment,
the results of the Simulink simulation match the results of a SystemBuild

1-2

Introduction

simulation. When you convert your model to a Simulink model, optimizations
such as vectorization, acceleration modes, and solver selection are also
available.

Due to modeling differences between the two environments, you might want to
perform further model optimizations to achieve top simulation performance.
Validate all models after translation.

Software Requirements
Version 2.7.10 of SB2SL requires MATLAB Version 8.0 and Simulink Version
8.0. For general system requirements, see the installation documentation.

You can apply SB2SL to SystemBuild files saved from SystemBuild Version
5.0 through Version 6.2 on Linux® or PC systems in ASCII format. However,
new blocks introduced since SystemBuild Version 6.0 cannot be converted.
For more information, see the list of blocks not converted in “Limitations”
on page 1-38.

Installation
The SB2SL software is available only through Web download at
http://www.mathworks.com/support/matrixx/transition/sb2sl. Follow
the installation instructions from the Web page to download the version you
require. For further instructions on how to install the Linux version of the
SB2SL software, see the installation documentation.

1-3

http://www.mathworks.com/support/matrixx/transition/sb2sl

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Optional Step to Convert to Simulink with SB2SL
Before converting your SystemBuild model to Simulink with SB2SL, consider
creating baseline code against which you can verify that the SB2SL converted
model returns acceptable results. You can use National Instruments
AutoCode™ software to generate C code for existing SystemBuild models.
Creating S-function blocks with AutoCode generated C code is a quick way to
package and use existing SystemBuild models in the Simulink environment.
If your SystemBuild model is large or complicated, consider using the
AutoCode software as part of your conversion process.

Using AutoCode:

• Encapsulates existing SystemBuild models for use within Simulink.

• Retains the exact behavior of the AutoCode within Simulink.

To use the AutoCode software, obtain a license for the National Instruments
AutoCode product.

Note You can use the AutoCode procedure as part of your workflow only if
you do not need to use a scheduler with your model.

Alternatively, you can contact the MathWorks® Consulting Services group
about the fee-based support for this process.

A suggested workflow to include the AutoCode software within a Simulink
model follows. You must have a working knowledge of the following software:

• National Instruments AutoCode

• Simulink, including S-functions

In addition, decide how you want to partition your SystemBuild model for
AutoCode sections.

1 Use the National Instruments AutoCode software to generate C code for
these partitions in the existing SystemBuild models.

1-4

Optional Step to Convert to Simulink® with SB2SL

2 Examine the generated C code and understand the structures and functions
for each partition.

3 Modify the generated C file to make sure that the include files list has only:

• #include <stdio.h>

• #include <math.h>

• #include sa_types.h

4 Copy the sa_types.h file into a folder local to the Simulink model.

5 Create a Simulink model.

6 In this new model, wrap the generated code for each partition in its own
S-function. If the code is simple, you might be able to use the S-Function
Builder tool. Otherwise, use the sfuntmpl_basic.c file.

a Compile the S-functions.

b Add an S-function block for each compiled S-function to the Simulink
model.

7 Connect the blocks as appropriate to simulate the original behavior of the
SystemBuild model.

8 Configure the model parameters, such as the solver settings and so forth.

9 Simulate the model and record results. You might need to change
configuration settings until you are satisfied with the settings.

10 Use the SB2SL tool to convert a partition of the original SystemBuild
model to a Simulinkmodel.

11 Replace the AutoCode code S-function for this partition with the SB2SL
converted partition.

12 Simulate the Simulink model and record results.

13 Compare the results of the two simulations.

14 As necessary, modify the SB2SL converted partition until you get desired
results.

1-5

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

You might need to repeat steps 10 to 14 until you are satisfied with the
converted SB2SL model.

1-6

Use SB2SL

Use SB2SL

In this section...

“Prepare the Model for Conversion” on page 1-7

“Start SB2SL” on page 1-7

“Load a SystemBuild Model into SB2SL” on page 1-8

“Select SystemBuild SuperBlocks” on page 1-10

“Select a SuperBlock Partition for Conversion” on page 1-11

“Set Translation Options” on page 1-12

“Convert SuperBlocks to Simulink Models” on page 1-22

“Compile Converted BlockScript” on page 1-25

“Save Translated Models and Data” on page 1-26

“Generate a Report” on page 1-26

Prepare the Model for Conversion
Before translating a SystemBuild model, save it in ASCII format (usually with
a file extension .xmd or .sbd). Also, check that you have write permission for
the folder that contains the file to convert.

To enable the transfer of parameterized variables (%vars) from SB2SL
software, make sure the variables are declared and resident in the Xmath
workspace. Then save the SystemBuild model with the Xmath Variables
option set to Save All.

Start SB2SL
To start SB2SL, at the MATLAB command prompt, type:

sb2sl

This opens the main SB2SL graphical user interface (GUI) and an associated
message window.

1-7

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Main SB2SL GUI and Message Window

Load a SystemBuild Model into SB2SL
Select File > Open in the SB2SL main GUI to load a SystemBuild model.
This opens a file browser from which you can select a SystemBuild model file.
Once you select the name of a SystemBuild file in the browser, SB2SL:

1-8

Use SB2SL

• Opens the file

• Loads all of the parameters, if any, into the MATLAB workspace

• Lists the names of all the SuperBlocks in your model in a list

You can follow the process with this tutorial by loading the .xmd file,
sbpend.xmd, included with SB2SL.

Main SB2SL GUI and Message Window with sbpend

Hint To locate the directory from which to browse for sbpend.xmd, type which
sbpend.xmd at the MATLAB command prompt.

1-9

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Select SystemBuild SuperBlocks
You can use SB2SL to convert SystemBuild SuperBlocks to Simulink models
at any level in the SystemBuild hierarchy. To begin the process of SuperBlock
conversion, select the name of a top-level SuperBlock you want to convert
from the list in the main SB2SL GUI. This action highlights all SuperBlock
names referenced by the selected SuperBlock.

Alternatively, you can display the SuperBlocks in a tree view by selecting
Window > Tree in the SB2SL main GUI. This opens the Model Tree
Structure window. From this window, you can use your mouse to select the
SuperBlock you want to convert to a Simulink diagram. To display all the
blocks in the tree, select View > Level > 2.

Tip For larger or more complicated SystemBuild models, consider translating
the model piecemeal (for example, by subsystem) instead of the entire model
all at once.

If you right-click a SuperBlock icon, a window opens that contains additional
information related to that SuperBlock (for example, type, number of blocks,
etc.).

1-10

Use SB2SL

Model Tree Structure and SuperBlock Information Windows

Select a SuperBlock Partition for Conversion
A SystemBuild model can contain data in separate partitions associated
with each SuperBlock. When you load a SystemBuild model into SB2SL, all
associated partitions are loaded into the MATLAB workspace as MATLAB
structures. When you use SB2SL to convert a SuperBlock into a Simulink
model, you must select the partition from which to reference the data for
building the model.

To choose the data partition:

1 Select Build > Partition in the main SB2SL GUI.

This opens the following window:

1-11

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

2 Select the partition you want your Simulink model to use, and click Apply.

Set Translation Options
Before you convert your SystemBuild model to a Simulink one, you can set
options for:

• Building the Simulink models (“Translation Build Options” on page 1-13)

• Generating reports from the translation (“Report Generation Options”
on page 1-16)

• Converting the reports to various text formats (“Report Formatting
Options” on page 1-18)

• Changing GUI font sizes for the translation option dialog boxes (“Window
Preferences” on page 1-20)

To save translation option settings for reuse in another SB2SL session, click
the Save button.

To reset default option settings, in the MATLAB Command Window, type
the following:

rmpref('SB2SL')

Close and restart SB2SL. The default settings are reapplied.

1-12

Use SB2SL

Translation Build Options
To set the translation build options, select File > Preferences in the main
SB2SL GUI.

The following build options are available:

1-13

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Option Description

Fit system to
view

Select this check box to scale the model to fit the
window size.

Clear this check box if you want to use the original
block sizes.

Add Terminator
and Ground
blocks

Select this check box to terminate unconnected
block inputs or outputs with Simulink Terminator or
Ground blocks. By default, SB2SL does not terminate
unconnected block inputs or outputs.

Route wires
around blocks

Select this check box to minimize crossing blocks with
signal lines in the Simulink model resulting from
SB2SL translation.

Ignore output
posting for
triggered
SuperBlocks

When you select this check box:

• All triggered SystemBuild outputs are posted in “as
soon as finished (SAF)” mode.

• Triggered SuperBlocks assigned to “after timing
requirement (ATR)” and “at next trigger (ANT)”
output posting modes are ignored.

Convert idle
SuperBlocks

If your model contains enabled or triggered
SuperBlocks that are also nested, one or more of these
blocks might never execute. To convert these idle
SuperBlocks, select this check box. By default, SB2SL
does not convert idle SuperBlocks.

Optimize
translated
model

Select this check box to maximize the use of standard
Simulink blocks when translating the following
SystemBuild blocks:

• Data store blocks

• Algebraic/logical expression blocks

• Integrator blocks

1-14

Use SB2SL

Option Description

Create
SuperBlock
libraries

Select this check box to create Simulink library files
that contain one Subsystem block per library for each
SuperBlock. This option creates Simulink library files
in the current directory. SB2SL creates library links
from the top-level model and subsequently nested
library links. Select this option if you want to use a
component-based modeling approach in the Simulink
environment.

Note If you have a library from a previous conversion,
SB2SL will use that library. If you want to convert
a model that reuses names from an earlier model
conversion, you should convert the new model into
an empty directory. Converting this model into the
same directory as the earlier conversion might cause
unexpected links.

Use Simulink
native blocks

Select this check box to convert using native Simulink
blocks. This option allows the Simulink environment
to provide additional optimization and configuration
ability in simulation and code generation. Alternately,
when you select this check box, the dialog selects both
of the following options by default:

• If blocks for Condition block with mode No
Default or With Default

Select this check box to convert the Condition block
using native Simulink if-else blocks and action
subsystems for the Condition blockMode parameter
set to With Default and No Default.

• Logic blocks

Select this check box to convert using native
Simulink logic blocks.

1-15

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Option Description

Put IDs in
annotations

Select this check box to insert the block ID into
the annotation of subsystem blocks instead of the
block name (the annotation parameter name is
AttributesFormatString). The ID is still visible just
below the block name. This option does not affect the
block ID of SuperBlocks; they always have the block ID
in the subsystem annotation to help componentization.

Note If you want to insert a block ID into the
annotation of a model that was converted in a release
before SB2SL 2.7.2, use the sbid2anno function.

Use round sum
block

Select this check box to use a round summing junction
instead of a square one in the Simulink model. This
change is only visual.

Report Generation Options
You can use report generation options to select the portions of the
SystemBuild data you want to include in a build report. To create a build
report, select the SB2SL Build > Report option. This option saves the
build report in the current directory in a file named xmdfilename.html, for
example, sbpend.html.

To specify the data portion options, click the Report Layout tab in the
Translator Options window.

1-16

Use SB2SL

The following report options are available for inclusion in the build report:

Option Description

Catalog of
SuperBlocks

Select this check box to include a list of the SuperBlocks
in the model.

Detailed
SuperBlock
information

Select this check box to include detailed information about
the SuperBlocks in the model.

Partitions
and
parameters

Select this check box to include the partitions and
parameters in the model.

1-17

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Option Description

List of
Blockscript
blocks

Select this check box to include a list of the BlockScript
blocks in the model.

List of
unconverted
blocks

Select this check box to include a list of the missing
(unconverted) blocks from the model. If all blocks were
converted, the report indicates that SB2SL has converted
all blocks.

Report Formatting Options
You have the following options for specifying the format of generated reports.
Click the Report Format tab in the Translator Options window to access
these options. Click the Report Format tab in the Translator Options
window to access these options.

1-18

Use SB2SL

Option Description

Format Select the output format:

• Web (HTML)

• Rich Text Format 95 (RTF)

• Rich Text Format 97 (RTF)

• LaTex (TEX)

1-19

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Option Description

Selecting Web (HTML) enables the View report after
creation check box.

Stylesheet The choices for this option depend on the setting of Format.

• If Format is Web (HTML), select Single page web or
Multi page web output

• If Format is Rich Text Format 95 (RTF), Rich Text
Format 97 (RTF), or LaTex (TEX), select Standard
print, Simple print, or Large type print.

View
report
after
conversion

Select this check box to display the report after it is created.
This check box is enabled only when Format is Web (HTML).

Window Preferences
You can use window preferences to customize the look of your SB2SL
windows. Click the Window Preferences tab in the Translator Options
window to access these options.

1-20

Use SB2SL

Under... Do...

Variable
width font

From the drop-down lists, select fonts to change the large,
normal, and small font size of the SB2SL window labels.

Fixed width
font

From the drop-down list, select the font size for fixed-width
displays.

Message
window

In Number of lines, enter the number of display lines.

In Buffer length, enter the number of lines you want to
keep in the message buffer.

1-21

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Convert SuperBlocks to Simulink Models
Before converting your SuperBlock to a Simulink model, you can set options
for building the model and recording the translation. See “Set Translation
Options” on page 1-12 for more information.

You are ready to convert your model to a Simulink one after you have:

• Selected the top-level SuperBlock and the partition you want to translate

• Set any desired translation options (see “Set Translation Options” on page
1-12)

To begin the translation, click the Convert button on the main SB2SL GUI.
This begins the translation process and the resulting Simulink model is
opened when it is finished. During the translation:

• The progress bar beneath the Convert button on the main SB2SL GUI
slides toward completion.

• The message window displays actions describing the translation.

���������	��
���
�����
��
�
�

���
��������
�������������
�����
���
���������
���������
��������
��

Simulink® Model for sbpend.xmd

1-22

Use SB2SL

After you convert your model to a Simulink one, some blocks on the Simulink
diagram might be labeled Unconverted. See “Blocks Not Converted to
Simulink Models” on page 1-39 and “Suggestions for Handling Unconverted
Blocks” on page 1-40 for information about unconverted blocks.

Default Conversion Results
SB2SL performs the following during a default conversion:

• Creates a top-level model with nondefault model-level parameter settings

• Converts SystemBuild SuperBlocks to Simulink atomic subsystems

SB2SL creates a top-level model with the following nondefault model-level
Configuration Parameters dialog box parameter settings:

Configuration
Parameter

Value Command–Line
Parameter

Value

Optimization > Signals
and Parameters pane:
Inline parameters

On 'InlineParams' 'on'

Solver pane: Type Variable-step 'SolverType' 'Variable-step'

Solver pane: Solver ode45 'SolverName' 'ode45'

Diagnostics >
Connectivity pane:
Mux blocks used to
create bus signals

error 'StrictBusMsg' 'ErrorLevel1'

Diagnostics > Data
Validity pane: Signal
resolution

Explicity only 'SignalResolution-
Control'

'UseLocalSettings'

Model Referencing
pane: Rebuild

If any changes
in known
dependencies
detected

'UpdateModelReference-
Targets'

'IfOutOf-Date'

Noncontinuous SuperBlocks (discrete, procedural, and triggered) correspond
most closely to atomic subsystems in the Simulink environment because

1-23

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

atomic subsystems are a semantically closer match to SuperBlocks. SB2SL
creates atomic subsystems with the following additional Atomic Subsystem
block parameter settings to improve readability, componentization potential,
and scalability.

Atomic Subsystem
Block Parameters

Value Command Line
Parameter

Value

Show port labels SignalName 'ShowPortLabels' 'SignalName'

Treat as atomic unit On 'TreatAsAtomicUnit' 'on'

Function packaging Function 'RTWSystemCode' 'Function'

For continuous SuperBlocks, SB2SL creates atomic subsystems with the
following parameters:

Atomic Subsystem
Block Parameters

Value Command Line
Parameter

Value

Show port labels SignalName 'ShowPortLabels' 'SignalName'

Treat as atomic unit Off 'TreatAsAtomicUnit' 'off'

Function packaging Function 'RTWSystemCode' 'Function'

SB2SL also enters the block ID string in the Atomic Subsystem block property
SB2SL Block Annotation tab.

Atomic Subsystem
Block Properties

Value Command-Line
Parameter

Value

Block Annotation Block ID string 'AttributesFormat-
String'

Block ID string

Alternatively, if the subsystem is atomic and the subsystem contents meet the
criteria for model reference (see “Simulink Model Referencing Requirements”),
you can convert the subsystem to a referenced model. See the Converting
Subsystems to Model Reference example for an example of this.

1-24

Use SB2SL

Note By default, SB2SL does not create Simulink library files with one
Subsystem block per library for each SuperBlock. If you want to transition
to component-based modeling in the Simulink environment, set the SB2SL
main GUI Build > Option Create SuperBlock libraries option (see
“Translation Build Options” on page 1-13). This option enables your
SystemBuild conversion to create Simulink library files with one Subsystem
block per library for each SuperBlock. This option can help you transition to
component-based modeling in the Simulink environment.

Compile Converted BlockScript
When you convert using SB2SL, SB2SL converts SystemBuild BlockScript
blocks into C code and places them into Simulink S-functions automatically.
Select Build > Compile in the main SB2SL GUI to open the Source Files
window. This window lists the S-functions generated by the translated
SystemBuild BlockScript blocks.

From the Source Files window:

1 Select the files you want to compile.

2 Click the Compile button, and the MATLAB standard mex command
compiles these C code S-functions.

1-25

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Save Translated Models and Data
Once the translation is complete, select File > Save in the main SB2SL GUI
to save either your model or your data:

• Select File > Save > Model to save the Simulink model to a file so that it
can be reloaded directly from the MATLAB and Simulink environment.

•

• Select File > Save > Dave to save the model data read from the
SystemBuild file during the translation.

Note You can set the PreLoadFcn callback on the Simulink block diagram
to reload the model data file the next time the Simulink model is opened.
For details on model callbacks, see “Callback Functions”.

Generate a Report
You can generate a report recording the details of your translation after you
convert a model with SB2SL. There are several report options you might
want to set beforehand. See “Report Generation Options” on page 1-16 for
information on these options.

To generate a report with the default option settings, select Build > Report
after converting your model.

1-26

Conversion Strategies

Conversion Strategies

In this section...

“Componentization” on page 1-27

“Improve Signal Line Wiring Results” on page 1-29

“Silence Unconnected Port Warnings” on page 1-31

“Migrate to a Native Simulink Modeling Style” on page 1-32

Componentization
Converting SystemBuild models to Simulink models enables you to simulate
sections of the overall model. It also allows you to more easily run existing
SystemBuild level tests and confirm the validity of the conversion. You can
componentize your converted SystemBuild model using library link and model
reference conversion capabilities. If you are creating multiple models during
the conversion process, either through multiple conversion invocation or
subsequent conversions of atomic subsystems into model references, having a
single configuration set object (see “Manage a Configuration Reference”) with
your desired configurations for all models can simplify conversions.

The benefits of componentization of your SystemBuild model include:

• Ability to convert your SystemBuild model using library links and model
reference

Converting components to be referenced models instead of library links
permits simplified testing. Because a referenced model is simply a model
that can be simulated, component tests can be brought to the MATLAB or
Simulink environment in a straightforward manner.

• Visually cleaning up the resulting model and addressing any issues with
unconverted blocks

• Testing the converted models using existing SuperBlock level tests

The next step is to get the new model to simulate with the same results
as the original model. This step might involve changing solver settings
and zero-crossing controls for models with continuous states employing
variable-step solvers.

1-27

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

SB2SL creates one top-level model per conversion. By default, it configures
the converted model to work with the Simulink Model block to allow for the
creation of a model reference component in another model or library.

If you do not want to use referenced models but do want to use design
components, convert the top-level model into an atomic subsystem:

1 Open a new or existing library.

2 Drag an Atomic Subsystem block into that library.

3 In the Simulink model editor window of the top-level model, select
Edit > Select all.

4 In the Simulink model editor window of the top-level model, select
Edit > Copy.

5 In the new or existing library, double-click the Atomic Subsystem block.

The subsystem is displayed.

6 In the Simulink model editor of the Atomic Subsystem block, select
Edit > Paste.

The contents of the top-level model are now in the Atomic Subsystem block.

7 Close the Atomic Subsystem block.

8 Save and close the top-level model and library.

Unconverted SuperBlocks
If the SystemBuild model contains a SuperBlock that SB2SL cannot convert
(for example, an external SuperBlock that is referenced by the SystemBuild
model), you can still create a link to that unconverted block by doing one
of the following:

• Replace the empty subsystem that is in place for the unconverted block
with a Simulink Model block to create a link:

1 Assuming that model A has an unconverted external SuperBlock, find
the file that contains the unconverted SuperBlock (for example, file B).

1-28

Conversion Strategies

2 Using SB2SL, translate the file that contains the unconverted
SuperBlock (for example, file B) to a Simulink model.

3 Leave file B as its own model, model B.

4 Drag a Model block into model A to reference model B.

• Copy a translated model into a Subsystem block in a library:

1 Assuming that model A has an unconverted external SuperBlock, find
the file that contains the unconverted SuperBlock (for example, file B).

2 Using SB2SL, translate the file that contains the unconverted
SuperBlock (for example, file B) to the Simulink model.

3 Open a new or existing library.

4 Drag an Atomic Subsystem block into this library.

5 Copy and paste the contents of model B into the new Atomic Subsystem
block and save the library.

6 Drag a copy of the new Atomic Subsystem block into A.

Improve Signal Line Wiring Results
When SB2SL converts a SystemBuild model into a corresponding Simulink
model, it connects the blocks as best as it can. If you are dissatisfied with
these results, you can improve the wiring results of the signal lines by:

• Manually cleaning up the wiring using the tips in “Wiring Cleanup Tips”
on page 1-29

• Converting block and system interfaces to native Simulink modeling styles:
vectorization, matrix signals, and buses using the guidelines in “Migrate to
a Native Simulink Modeling Style” on page 1-32

Wiring Cleanup Tips
The following guidelines describe how you can visually clean a Simulink
model that results from a SystemBuild model translation:

1-29

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Modeling Pattern In the Simulink Model Editor...

Multiple lines in parallel going to
multiple destinations can cause
visually undesired wiring in your
model. The use of Mux and Demux
blocks can cause these issues.

Perform one or all of the following:

• Route a single line to a copy of the Demux block next to
the destination. This line enables one wire to be used
for the majority of the routing instead of multiple wires.

• Rotate and resize blocks and connectors.

• Select the Mux or Demux block and use the
Diagram > Rotate & Flip > Flip Block command
to rotate the block 180 degrees to change the wiring
visually.

Excessively autorouted lines can
cause visually undesired wiring.

Perform one or all of the following:

• Turn off autorouted lines in the SB2SL GUI
(File > Preferences, click Build tab, and clear the
Route wires around blocks check box).

• Resize Mux and Demux blocks to line up their
corresponding ports. This alignment helps remove
diagonal wiring.

The following example shows the appearance of the sbpend model when you
turn off autorouted lines.

1-30

Conversion Strategies

The following example shows the appearance of the sbpend model when you
turn on autorouted lines.

Use the Format menu commands on the Simulink model editor for basic
graphical cleanup of a model, such as block mass alignments and relative
alignments.

Silence Unconnected Port Warnings
After conversion, SB2SL might generate a model with unconnected blocks. By
default, unconnected blocks cause warnings each time you update the model
diagram. To avoid these warnings, use one of the following:

• Before conversion, enable the addition of Terminator and Ground blocks in
the SB2SL GUI (File > Preferences, click Build tab, and select the Add
Terminator and Ground blocks check box).

• After conversion, use the addterms function to add terminators to the
unconnected ports in the model.

If you do not want the unconnected lines to be terminated, and you do not
want to display the warnings in your MATLAB Command Window, you can
suppress these messages with the following:

1 Before conversion, disable the addition of Terminator and Ground blocks in
the SB2SL GUI (File > Preferences, click Build tab, and clear the Add
Terminator and Ground blocks check box).

1-31

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

2 In the MATLAB Command Window, type the following:

warning('off','Simulink:Engine:InputNotConnected')
warning('off','Simulink:Engine:OutputNotConnected')

3 When you want to reenable the warnings, type the following:

warning('on','Simulink:Engine:InputNotConnected')
warning('on','Simulink:Engine:OutputNotConnected')

These commands are session-wide commands that affect all Simulink models
until you exit the MATLAB environment or change the warning settings.

Migrate to a Native Simulink Modeling Style
Once you have a functioning baseline model, consider the following guidelines
to take advantage of the Simulink software capabilities. There are no
SystemBuild correlations.

• To reduce wiring clutter and simplify interfaces:

- Use the Simulink single-wire vector and matrix support. The
SystemBuild software uses row-major 2-D matrices in some cases,
whereas the Simulink software uses column-major arrays for all matrix
dimensions. This means that to translate some 2-D calculations, you
might need to account for a design transpose from time to time (an
actual transpose block is not needed because the entire algorithm is
transposed).

- Create single-wire bundles using the Bus Creator and Bus Selector
blocks. The SystemBuild software has a graphical wire bundling
capability. However, you use this only for visual presentation; you do not
use it to define interfaces or semantic operations. Simulink bus signals
are more like real signals; they can:

• Feed into nonarithmetic operator blocks such as Inport, Outport,
Switch, and so on.

• Have nested hierarchies (buses within buses).

In addition, you can:

• Create bus objects in the MATLAB workspace to define and enforce
interfaces.

1-32

Conversion Strategies

• Use the bus editor to graphically edit bus objects.

See “Bus Objects”.

• Instead of the SystemBuild logical concept (positive, negative), use the
Simulink Boolean data type (false, true). To create native Simulink models
with full efficiency and diagnostic capability, consider moving from the
SB2SL logical blocks to the Simulink native logic blocks. In the converted
model, consider replacing the LOG sublibrary NOT block with its Simulink
equivalent (Logical Operator block with Operator parameter set to NOT).

• The SystemBuild Algebraic Expression block supports inlined and
production code generation, but it does not currently support some of the
Simulink Coder™ code generation optimizations. Consider replacing the
SystemBuild Algebraic Expression block with the MATLAB Function block
to improve production code generation.

1-33

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Compatibility Between SystemBuild and Simulink
Software

In this section...

“Introduction” on page 1-34

“SB2SL Simulink Library” on page 1-34

“Simulink® Coder™ Software and Converted SB2SL Models” on page 1-36

“Referenced Models in Normal Mode with Converted SB2SL Models” on
page 1-37

Introduction
SB2SL performs a block-by-block translation of the SystemBuild model. For
SystemBuild blocks for which a clear Simulink equivalent exists, SB2SL
places the equivalent built-in Simulink block into the resulting Simulink
model. The Gain block is an example in which there is a clear equivalent
between SystemBuild and Simulink blocks.

Other SystemBuild blocks have no clear Simulink equivalents. However,
through the use of Simulink masking and library features, equivalent
implementations of these blocks have been created and are in a Simulink
library called libsb2sl.

An example of this type of block is the Ramp block in the SystemBuild SNG
library. This block supports limits on the output and a relative start time for
the ramp. The standard Simulink Ramp block does not inherently support
these features. SB2SL translates this block into a masked subsystem that
includes a collection of existing Simulink blocks. This masked subsystem
behaves the same as the SystemBuild Ramp block.

SB2SL Simulink Library
You can find all of the masked blocks generated by SB2SL that are not in
any of the other Simulink libraries in the library libsb2sl. This library is
provided as part of the Simulink environment. (You need to download and
install the SB2SL software only if you want to use the SB2SL tool to convert

1-34

Compatibility Between SystemBuild™ and Simulink® Software

SystemBuild models.) You can open the library at the MATLAB command
line by typing:

libsb2sl

After SB2SL translation, some blocks that appear in the resulting Simulink
model may be from this library.

1-35

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Open any mask of the Simulink blocks in this library to see the exact
implementation of each SystemBuild equivalent used by SB2SL. For example,
the Simulink equivalent to the SystemBuild Ramp block is in

libsb2sl/SGN/LimRamp

For these blocks:

1VarPoly
ConditionBlock
DAxisRotation
Decoder
Encoder
IAxisRotation
LogExpression
ZILogExpression
General
General0

the following equivalents are enabled:

• Code reuse

• Variable-step solvers in referenced models

• Improved performance with accelerated models

• Simulink Normal mode for model reference

Simulink Coder Software and Converted SB2SL
Models
You can use the Simulink Coder software to generate code for models you
have converted from the SystemBuild to the Simulink environment (using
SB2SL). Code is generated for most translated blocks in the model. Code
generation is also supported for converted models that contain noninlined
BlockScript blocks.

The blocks that do not support code generation through the Simulink Coder
software are:

• GainScheduler

1-36

Compatibility Between SystemBuild™ and Simulink® Software

• Interp Table (Archive library)

• ShiftRegister

Referenced Models in Normal Mode with Converted
SB2SL Models
You can use converted SB2SL models in referenced models and execute those
models in Simulink Normal mode. Normal mode is one of two modes in which
Simulink software can execute a referenced model. For further details, see
“Simulation Modes for Referenced Models”.

1-37

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Limitations

In this section...

“Unsupported Conversions” on page 1-38

“File Format Support” on page 1-39

“Blocks Not Converted to Simulink Models” on page 1-39

“Suggestions for Handling UserCode Blocks” on page 1-41

Unsupported Conversions
No translator can completely convert an optimally designed SystemBuild
model into an optimally designed Simulink model. There are subtle
differences in the way that the two models work that prevent faithful
translation of all capabilities. However, this tool does convert basic blocks and
hierarchy from one tool to the other in a form that can be simulated. The
following are limitations of SB2SL:

• Does not translate binary SystemBuild files.

• Only double data types are supported. Other data types are not supported.

• Write to Variable and Read from Variable blocks do not support the
element- or bit-addressing option.

• The SystemBuild simulation parameter cdelay is not supported.

• The timing of triggered subsystems with the “as soon as finished” output
posting requirement differs from the SystemBuild implementation:

- SystemBuild updates the outputs at the beginning of the next minor
numerical integration step.

- In the Simulink environment, the outputs are available immediately.

• Simulink models obtained from SB2SL conversions of SuperBlocks
containing any triggered SuperBlocks with both of the following attributes
will not run:

- The output posting is selected as “at timing requirement.”

- The triggered SuperBlock is nested within another triggered SuperBlock.

1-38

Limitations

• BlockScripts with scalar parameters cannot generate embedded real-time
(ERT) target code.

• BlockScripts cannot be used in referenced models.

For more information on the correspondence between SystemBuild and
Simulink blocks, see “MATRIXx Feature to MathWorks Feature Mapping”
on page A-2.

File Format Support
SB2SL cannot read SystemBuild files stored in the binary file format.

Blocks Not Converted to Simulink Models
SB2SL converts the following SystemBuild blocks into empty placeholder
blocks in Simulink models. You may want to replace these with various
Simulink blocks you have developed that are equivalent.

• State transition diagrams

• MathScript blocks

• UserCode blocks (see “Suggestions for Handling UserCode Blocks” on page
1-41 for a workaround)

• Interactive Animation blocks

• Any new blocks introduced since SystemBuild Version 6.0

These blocks are converted into blocks labeled Unconverted. To view a
complete listing of the blocks not translated, select Build > Unconverted
Blocks from the SB2SL GUI.

1-39

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Suggestions for Handling Unconverted Blocks
You can implement all of the SystemBuild operations represented by
the unconverted blocks on your Simulink diagram using the MATLAB
software, Simulink, and, in some cases, other related products. Here are
some suggestions for replacing the unconverted blocks with ones usable for
simulation with the Simulink environment:

• You can replace MathScript blocks with Interpreted MATLAB Function or
MATLAB Function blocks. MATLAB Coder is used to run MATLAB files.
You must write your own files to execute the equivalent MathScript.

• You can replace UserCode blocks with S-Function blocks. These are blocks
you can use to run C code or Fortran.

• You can use a variety of blocks in the Simulink Sinks library to replace
Interactive Animation blocks, depending on the function of that block.
For a greater variety of animated blocks, see the Gauges Blockset™
documentation.

• You can replace state transition diagrams with Stateflow® charts. This
requires you to purchase Stateflow in addition to MATLAB and Simulink
software.

To replace an unconverted block in your Simulink model with the correct
Simulink block:

1 Open an unconverted block in the Simulink model by double-clicking it.

1-40

Limitations

This opens a window listing the SystemBuild component that caused the
unconverted block to be created.

2 Either:

• Delete the unconverted block and copy an appropriate standard Simulink
block into its place.

• Use the Simulink function replace_block to replace the unconverted
block in the Simulink model.

Suggestions for Handling UserCode Blocks
SB2SL does not directly convert UserCode blocks to Simulink blocks. As
a workaround, you can manually convert the UserCode block contents to
equivalent Simulink S-function methods and SimStruct functions.

You should have the following background:

• Good C programming skills

• Good understanding of SystemBuild UserCode blocks

For more information about S-functions:

See... For...

“How S-Functions Work” General information on how
S-functions work.

“About Writing C S-Functions” General information on writing C
S-functions.

“Templates for C S-Functions” Descriptions of the available C MEX
S-function templates, the minimum
required S-function methods, and
the S-function data types.

“DWork Vector Basics” Description of DWork vectors that
you can use to allocate blocks of
memory from within S-functions.

1-41

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

This topic describes how to create custom Simulink S-function files. The action
you choose depends on whether or not your UserCode block code is simple.
Simple UserCode block code has only INIT, STATE, OUTPUT, and/or LASTmodes:

• If your UserCode block code is simple, consider using the S-Function
Builder block to create an S-function. See “Use the S-Function Builder
Block to Convert Simple UserCode Block Code” on page 1-42.

• If your UserCode block is more complex, consider manually converting your
code to an S-function. See “Manually Convert More Complex UserCode
Block Code” on page 1-43. If a UserCode block has MONIT, EVENT, and/or
LIN modes, it is more complex.

• If your UserCode block contains Fortran code, see “Convert UserCode Block
Fortran Code” on page 1-44.

Use the S-Function Builder Block to Convert Simple UserCode
Block Code
Before you start, see “Build S-Functions Automatically”. That topic describes
how to use the S-Function Builder block to create an S-function.

The S-Function Builder block supports the following S-function methods:

• mdlInitializeConditions

• mdlInitializeSampleTimes

• mdlInitializeSizes

• mdlCheckParameters

• mdlProcessParameters

• mdlDerivatives (continuous states)

• mdlUpdate (discrete states)

• mdlOutputs

• mdlTerminate

The S-Function Builder block has a GUI that guides you in the generation
of an S-function. To use it, copy the argument information code from your
simple UserCode block into the S-Function Builder block dialog box.

1-42

Limitations

Manually Convert More Complex UserCode Block Code
To convert UserCode block code using existing C MEX S-function templates:

1 In the SystemBuild model, open the UserCode block to access the code
contents.

2 From the available templates, copy the most appropriate C MEX S-function
template to your working directory:

• sfuntmpl_basic.c

• sfuntmpl_doc.c

3 Rename your template copy with a unique name. This renamed file is
your C MEX S-function file.

4 Open the UserCode block code file and your C MEX S-function file.

5 Copy the contents of the mapping modes in the UserCode block code file to
the corresponding S-function method in the C MEX S-function file. Use the
following mapping table as a guide. Modify the C code to ensure that it has
the correct syntax in the S-function.

UserCode Block Mode S-Function Method

INIT mdlInitializeConditions

mdlInitializeSampleTimes

mdlInitializeSizes

mdlCheckParameters

mdlProcessParameters

mdlStart

STATE mdlDerivatives (continuous states)

mdlUpdate (discrete states)

OUTPUT mdlOutputs

MONIT mdlGetTimeOfNextVarHit

EVENT mdlZeroCrossings

1-43

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

UserCode Block Mode S-Function Method

LIN mdlProjection

LAST mdlTerminate

6 Using the following mapping table, reimplement the number of inputs,
outputs, and states in the S-function method, mdlInitializeSizes. Use
the corresponding SimStruct function.

Arguments S-Function Method

NU ssSetNumInputPorts

NX ssSetNumContStates (continuous states)

ssSetNumDiscStates (discrete states)

NY ssSetNumOutputPorts

7 Save your file.

Convert UserCode Block Fortran Code
If your UserCode block code contains Fortran code, see “Create Level-2
Fortran S-Functions”. That topic provides guidelines on how you can create
an S-function to interact with your Fortran code.

1-44

2

Function Reference

sbid2anno

Purpose Convert block names with ID to traditional names

Syntax sbid2anno('sys')
sbid2anno('sys','ShowIdString','off')
sbid2anno('sys','ShowIdString','on','ReplaceDepth',inf)

Description For the blocks and subsystems in the top level of sys, sbid2anno('sys')
moves the appended SuperBlock IDs from the block names to the block
annotation fields. It uses the following guidelines:

• The function assigns canonical, unique, hidden names to blocks with
no name before the SuperBlock ID.

• The function assigns canonical, unique, numeric suffixes to blocks
with appended SuperBlock IDs that make them unique.

• The function ignores blocks with no appended SuperBlock IDs.

sbid2anno('sys','ShowIdString','off') performs the same
function as sbid2anno('sys'), but does not set the block annotation in
the block property, AttributesFormatString.

sbid2anno('sys','ShowIdString','on','ReplaceDepth',inf)
performs the same function as sbid2anno('sys'), but does not set
the block annotation in the block property, AttributesFormatString.
This function also replaces all block names with appended SuperBlock
IDs in the model, regardless of the number of nested system levels. If
the value ReplaceDepth is invalid (nonnumeric), this function ignores
the value and uses 1.

Examples This example assumes a previously translated SuperBlock, FltLevel. It
converts all blocks and subsystems with appended SuperBlock IDs at
the root level of FltLevel.

open_system('FltLevel')
sbid2anno('FltLevel')

2-2

A

Conversions

A Conversions

MATRIXx Feature to MathWorks Feature Mapping
Simulink can replicate almost all SystemBuild functionality through basic
blocks or through the use of additional blocksets or S-function code. This
topic contains tables that might be helpful in the translation of SystemBuild
models to Simulink models:

In this section...

“Corresponding SystemBuild and Simulink Blocks” on page A-2

“Transition Xmath to MATLAB” on page A-21

“MATRIXx and MathWorks Product Table” on page A-66

Corresponding SystemBuild and Simulink Blocks

Transition SystemBuild Access Commands to MATLAB and
Simulink

Xmath Module Xmath Function MathWorks
Function

MathWorks
Product

Notes

xms copydatastore Data Store
Read and Data
Store Write
blocks

Simulink —
Signal Routing

Use these
blocks to create
data stores.
To add these
blocks, at
the command
line, enter
add_block.

xms copystd NONE Stateflow Cannot copy
Stateflow
states from the
command line.

xms copysuperblock add_block Simulink
built-in

A-2

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath Module Xmath Function MathWorks
Function

MathWorks
Product

Notes

xms createblock add_block Simulink
built-in

xms createbubble NONE Stateflow Cannot create
Stateflow
states from the
command line.

xms createconnection add_line Simulink
built-in

mx_pns createmcd NONE NONE Simulink does
not have an
equivalent RTF
file type.

xms creatertf Build code with
Simulink Coder

Simulink Coder Simulink does
not have an
equivalent RTF
file type.

xms createstd NONE Stateflow Cannot create
Stateflow
states from the
command line.

xms createsuperblock add_block Simulink
built-in

xms createsuperbubble NONE Stateflow Cannot create
Stateflow
states from the
command line.

xms createtransition NONE Stateflow Cannot create
Stateflow
transitions
from the
command line.

A-3

A Conversions

Xmath Module Xmath Function MathWorks
Function

MathWorks
Product

Notes

xms createusertype NONE NONE Use Simulink
Fixed Point™
to define new
data types.

xms deleteblock delete_block Simulink
built-in

xms deletebubble NONE NONE In Stateflow,
cannot remove
states from the
command line.

xms deletecomponent NONE NONE

xms deleteconnection delete_line Simulink
built-in

xms deletedatastore Data Store
Read & Data
Store Write
blocks

Simulink —
Signal Routing

You must use
these blocks
to create data
stores. To
remove these
blocks, at
the command
line, enter
delete_block.

xms deletestd NONE NONE In Stateflow,
cannot remove
states from the
command line.

xms deletesuperblock delete_block Simulink
built-in

xms deletetransition NONE NONE

xms deleteusertype NONE NONE

A-4

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath Module Xmath Function MathWorks
Function

MathWorks
Product

Notes

xms modifyblock set_param Simulink
built-in

Use set_param
command to
modify blocks.

xms modifybubble NONE Stateflow

xms modifyconnection delete_line,
add_line

Simulink
built-in

xms modifystd NONE Stateflow

xms modifysuperblock set_param Simulink
built-in

xms modifytransition NONE Stateflow

xms modifyusertype NONE NONE

xms pictodsn NONE NONE

xms printmodel Choose Print
from the File
menu in your
Simulink
Model

Simulink

xms psets Simulink takes
inputs from
MATLAB
Workspace

Simulink

xms psets_AddToList Simulink takes
inputs from
MATLAB
Workspace

Simulink

xms psets_Load Simulink takes
inputs from
MATLAB
Workspace

Simulink

A-5

A Conversions

Xmath Module Xmath Function MathWorks
Function

MathWorks
Product

Notes

xms psets_Save Simulink takes
inputs from
MATLAB
Workspace

Simulink

xms queryblock find_system
and get_param

Simulink
built-in

xms queryblockoptions get_param Simulink
built-in

xms querybubble NONE Stateflow

xms querybubbleoptions NONE Stateflow

xms querycatalog NONE Simulink Simulink does
not have an
equivalent
catalog
browser.

xms queryconnection find_system
and get_param

Simulink
built-in

Use the
findall option.

xms queryconnection-
options

get_param Simulink
built-in

xms querystd NONE Stateflow

xms querystdoptions NONE Stateflow

xms querysuperblock find_system
and get_param

Simulink
built-in

xms querysuperblock-
options

get_param Simulink
built-in

xms querytransition NONE Stateflow

xms querytransitionsoptionsNONE Stateflow

xms read_rawfile NONE NONE

xms realsim_autoplot NONE NONE

A-6

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath Module Xmath Function MathWorks
Function

MathWorks
Product

Notes

xms renamedatastore Data Store
Read and Data
Store Write
blocks

You must use
these blocks
to create data
stores. To
modify these
blocks, at
the command
line, enter
set_param.

xms renamestd NONE Stateflow

xms renamesuperblock set_param Simulink
built-in

xms rve_get NONE NONE

xms rve_info NONE NONE

xms rve_put NONE NONE

xms rve_quit NONE NONE

xms rve_reset NONE NONE

xms rve_start NONE NONE

xms rve_stop NONE NONE

xms rve_update NONE NONE

xms setsbdefault NONE Simulink Simulink does
not allow you
to change
the default
preferences.

xms showsbdefault NONE Simulink Simulink does
not allow you
to change
the default
preferences.

A-7

A Conversions

Xmath Module Xmath Function MathWorks
Function

MathWorks
Product

Notes

xms sim sim Simulink
built-in

xms simout [sizes,x0,xord]
=
Simulink_Model_Name

Simulink

xms sysbldevent
set_param(gcb,
'openfcn',
'enter_code_
here')

Simulink
built-in

openfcn is one
of many model
callbacks.

xms sysbldrelease NONE Simulink

Transition SystemBuild Blocks to Simulink

A

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

SystemBuild ABM integration NONE NONE Integration
method —
comparison list
in Help.

Piece-wise Linear AbsoluteValue
Block

Abs Math Operations

Trigonometric Acos Block Trigonometric
Function

Math Operations

Algebraic Algebraic-
Expression Block

AlgExpression LIBSB2SL/ALG

SuperBlocks Altia Block NONE NONE Use Gauges
Blockset.

A-8

MATRIXx® Feature to MathWorks® Feature Mapping

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

SystemBuild analyze NONE NONE See find_system
and get_param,
and the Model
Info block.

Trigonometric Arccosine Trigonometric
Function

Math Operations

Trigonometric Arcsine Trigonometric
Function

Math Operations

Trigonometric Arctangent Trigonometric
Function

Math Operations

Artificial
Intelligence

Artificial
Intelligence

Fuzzy Logic
Controller

Fuzzy Logic
Toolbox™

Trigonometric Asin Trigonometric
Function

Math Operations

Trigonometric Atan2 Trigonometric
Function

Math Operations

Coordinate
Transformation

AxisInverse NONE NONE

Coordinate
Transformation

AxisRotation DAxisRotation or
IAxisRotation

LIBSB2SL/TRN

B

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

Dynamic Backlash Relay Nonlinear

Interpolation BiCubicInterp BiCubicInterp LIBSB2SL/NTP

Interpolation BiLinearInterp BiLinearInterp LIBSB2SL/NTP

User
Programmed

BlockScript BlockScript or
ZIBlockScript

LIBSB2SL/USR

A-9

A Conversions

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

Software
Constructs

Break Stateflow Stateflow

Archive BreakPoints BreakPoints LIBSB2SL/ARC

C

SystemBuild
Palette

SystemBuild Block Simulink
Block

Simulink
Block Library

Notes

Coordinate
Transforms

Cartesian2Polar Cart2Polar LIBSB2SL/TRN

Coordinate
Transforms

Cartesian2Spherical Cart2Sph LIBSB2SL/TRN

Dynamic ComplexPoleZero CGainDamps-
Freqs or
DGainDamps-
Freqs

LIBSB2SL/DYN

ComponentReference NONE NONE

Logical Condition ConditionBlock LIBSB2SL/SUP

MATRIXx®

Equations
Constant Constant Sources

Interpolation ConstantInterp ConstantInterp LIBSB2SL/NTP

Power
Exponential
Logarithmic

ConstantPowerU Constant**u LIBSB2SL/PEL

Software
Constructs

Continue Chart Stateflow

Trigonometric CosAsin CosAsin LIBSB2SL/TRG

Trigonometric CosAtan2 CosAtan2 LIBSB2SL/TRG

Trigonometric Cosine Trigonometric
Function

Math
Operations

A-10

MATRIXx® Feature to MathWorks® Feature Mapping

SystemBuild
Palette

SystemBuild Block Simulink
Block

Simulink
Block Library

Notes

Algebraic CrossProduct CrossProd LIBSB2SL/ALG

Interpolation CubicSplineInterp CubicInterp LIBSB2SL/NTP

D

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

Logical DataPathSwitch Switch LIBSB2SL/LOG

SuperBlocks DataStore DataStoreRW or
DataStoreW

LIBSB2SL/SUP

Piece-wise Linear DeadBand Dead Zone Discontinuities

Logical Decoder Decoder LIBSB2SL/LOG

Algebraic DotProduct DotProduct LIBSB2SL/ALG

E

SystemBuild
Palette

SystemBuild Block Simulink Block Simulink Block
Library

Notes

Algebraic Element-by-Element
Division

Product Math
Operations

Specify division.

Algebraic Element-by-Element
Product

Product Math
Operations

SuperBlock Enabled
SuperBlocks

Enabled
Subsytem

Ports &
Subsystems

Logical Encoder Encoder LIBSB2SL/LOG

Power
Exponential
Logarithmic

Exponential Math Function Math
Operations

A-11

A Conversions

F

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

Artificial
Intelligence

Fuzzy Logic Fuzzy Logic
Controller

Fuzzy Logic
Toolbox

G

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

Algebraic Gain Gain Math Operations

Logical GainScheduler GainScheduler LIBSB2SL/LOG

SystemBuild Gear’s method
integration

NONE NONE Integration
method —
comparison list
in Help.

H

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

Dynamic Hysteresis Cbacklash or
Dbacklash

LIBSB2SL/DYN

I

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

Software
Constructs

IfThenElse NONE NONE Use Stateflow to
implement.

Implicit Implicit blocks NONE NONE

Implicit ImplicitConstraint NONE NONE

Implicit ImplicitOutput NONE NONE

A-12

MATRIXx® Feature to MathWorks® Feature Mapping

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

Implicit ImplicitUserCode NONE NONE

Implicit ImplicitVariable NONE NONE

Dynamic Integrator CIntegrator or
Dintegrator

LIBSB2SL/DYN

Interpolation Interpolation
blocks

Lookup
table blocks,
Interpolation
using Prelookup

Lookup Tables

User
Programmed

UCB S-functions User-Defined
Functions

UCB uses C or
Fortran code.
S-functions use
C/C++, M, or
Fortran code.

J
No SystemBuild blocks begin with J.

K

No SystemBuild blocks begin with K.

L

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

Matrix Equations LeftMultiply Product Math Operations Choose
Matrix(*)
for the
Multiplication
parameter in the
Simulink Product
block.

Dynamic LimitedIntegrator CLimInt or
DLimInt

LIBSB2SL/DYN

A-13

A Conversions

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

Piece-wise Linear Limiter Saturation Discontinuities

Archived Linear
Interpolation
Table

Interp Table LIBSB2SL/ARC

Interpolation LinearInterp LinearInterp LIBSB2SL/NTP

Power
Exponential
Logarithmic

Logarithm Math Functions Math Operations

Logical LogicalExpression LogExpression or
ZILogExpression

LIBSB2SL/LOG

Logical LogicalOperator Logical Operator
or NOT

Math
Operations or
LIBSB2SL/LOG

M

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

User
Programmed

MathScriptBlock Fcn User-Defined
Functions

Matrix Equations MatLeftDivide Fcn User-Defined
Functions

Matrix Equations MatRightDivide Fcn User-Defined
Functions

Matrix Equations MatrixInverse Fcn User-Defined
Functions

Matrix Equations MatrixMultiply Product Math Operations

Matrix Equations MatrixTranspose Fcn User-Defined
Functions

Interpolation MultilinearInterp MultilinearInterp LIBSB2SL/NTP

A-14

MATRIXx® Feature to MathWorks® Feature Mapping

N

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

Signal Generator NormalRandom CNormalRandom
or
DNormalRandom

LIBSB2SL/SNG

Dynamic Nth Order
Integrator

Integrator Continuous

Dynamic NumDen CNumDenCoeffs
or
DNumDenCoeffs

LIBSB2SL/DYN

O

No SystemBuild blocks begin with O.

P

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

Dynamic PIDController CPIDControlLaw
or
DPIDControlLaw

LIBSB2SL/DYN

Coordinate
Transformation

Polar2Cartesian Polar2Cart LIBSB2SL/TRN

Dynamic PoleZero CGainZerosPoles
or
DGainZerosPoles

LIBSB2SL/DYN

Algebraic Polynomial 1VarPoly LIBSB2SL/ALG

Piece-wise linear Preload Preload LIBSB2SL/PWL

Signal Generator PulseTrain Pulse Train LIBSB2SL/SNG

A-15

A Conversions

Q

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

Piece-wise Linear Quantization Quantization LIBSB2SL/PWL

R

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink
Block Library

Notes

Signal Generator Ramp LimRamp LIBSB2SL/SNG

SuperBlocks ReadVariable From Workspace Sources The
ReadVariable
and From
Workspace
blocks are
different
concepts, but
have the
same main
functionality.

Logical RelationalOperator RelationalOperator,
NEQV, or EQV

Math
Operations or
LIBSB2SL/LOG

Dynamic Reset Integrator CResetIntegrator
or
DResetIntegrator

LIBSB2SL/DYN

Matrix Equations RightMultiply Fcn S-Functions
and Lookup
TablesSystemBuild Runge-Kutta

integration
NONE NONE Integration

method —
comparison list
in Help.

A-16

MATRIXx® Feature to MathWorks® Feature Mapping

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink
Block Library

Notes

SystemBuild variable-step
Adams-Moulton
integration

NONE NONE Integration
method —
comparison list
in Help.

SystemBuild variable-step
Kutta-Merson
integration

NONE NONE Integration
method —
comparison list
in Help.

S

SystemBuild
Palette

SystemBuild Block Simulink
Block

Simulink
Block Library

Notes

Piece-wise Linear Saturation Saturation Discontinuities

Matrix Equations ScalarGain Gain Math
Operations

Gain can be
used as both
a scalar gain
and an element
gain.

Software
Construct

Sequencer Bar NONE Simulink Use the block
priorities to
force order of
operation.

Algebraic ShiftRegister (Type
Conversion)

ShiftRegister LIBSB2SL/LOG

Signal Generator Signal Generator
Palette

Sources
Library

Sources

Power
Exponential
Logarithmic

SignedSquareRoot SignedSqrt LIBSB2SL/PEL

Trigonometric SinAtan2 SinAtan2 LIBSB2SL/TRG

A-17

A Conversions

SystemBuild
Palette

SystemBuild Block Simulink
Block

Simulink
Block Library

Notes

Trigonometric Sine Trigonometric
Function

Math
Operations

Signal Generator SinWave SinusoidGen LIBSB2SL/SNG

Software
Construct

Software Construct
Palette

NONE Stateflow Use Stateflow
to get these
software
constructs into
your Simulink
model.

Coordinate
Transforms

Spherical2Cartesian Sph2Cart LIBSB2SL/TRN

Dynamic SpringMassDamper CSpringMassDamper
or
DSpringMassDamper

LIBSB2SL/DYN

Power
Exponential
Logarithmic

SquareRoot Math Function Math
Operations

Signal Generator SquareWave SquareWave LIBSB2SL/SNG

Dynamic StateSpace CStateSpace or
DStateSpace

LIBSB2SL/DYN

Superblocks STD Stateflow Stateflow

Signal Generator Step StepFcn LIBSB2SL/SNG

Logical Stop Simulation Stop
Simulation

Sinks

Algebraic Summer Sum Math
Operations

Superblocks SuperBlock Subsystem Ports &
Subsystems

Superblocks SuperBlocks Palete Signal Routing
library

Signal Routing

A-18

MATRIXx® Feature to MathWorks® Feature Mapping

SystemBuild
Palette

SystemBuild Block Simulink
Block

Simulink
Block Library

Notes

Superblocks SuperBlock — Enabled Enable
Subsystem

Ports &
Subsystems

Place an
Enable block
in a subsystem
to make
an enabled
subsystem.

Superblocks SuperBlock —
Triggered

Trigger Ports &
Subsystems

Place a Trigger
block in a
subsystem
to make a
triggered
subsystem.

T

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

SuperBlocks Text NONE NONE In Simulink,
double click the
white space to
create text.

Coordinate
Transform

Three-Axis
Inverse Rotation

NONE NONE

Coordinate
Transform

Three-Axis
Rotation

NONE NONE

Piece-wise Linear Threshold
(DeadBand)

Dead Zone Discontinuities

Dynamic TimeDelay DTimeDelay LIBSB2SL/DYN

Dynamic Transport Lag Unit Delay or
Transport/Variable
Transport Delay

Discrete,
Continuous

Algebraic TypeConversion Type Conversion S-functions and
Lookup Tables

A-19

A Conversions

U

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

Power
Exponential
Logarithmic

UPowerConstant u**Constant LIBSB2SL/PEL

User
Programmed

UCB S-Functions S-Functions and
Lookup Tables

UCB uses C or
Fortran code.
S-function uses
C/C++, M, Ada,
or Fortran code.

Signal Generator UniformRandom CUniformRandom
or
DUniformRandom

LIBSB2SL/SNG

System Build Usertype NONE NONE Simulink Fixed
Point allows user
data types to be
defined.

V

No SystemBuild blocks begin with V.

W

SystemBuild
Palette

SystemBuild
Block

Simulink Block Simulink Block
Library

Notes

Signal Generator Waveform GenWaveform LIBSB2SL/SNG

Software
Constructs

While NONE Stateflow

SuperBlocks WriteVariable Goto/From blocks Signal Routing

X

No SystemBuild blocks begin with X.

A-20

MATRIXx® Feature to MathWorks® Feature Mapping

Y

No functions begin with Y.

Z

No SystemBuild blocks begin with Z.

Transition Xmath to MATLAB

Transition Xmath Functions to MATLAB

A

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic abcd tf2ss MATLAB

Intrinsic abort dbquit MATLAB built-in

Intrinsic abs abs MATLAB built-in

Intrinsic acos acos MATLAB built-in Defined from
-1 to 1 in Xmath;
MATLAB returns
complex value.

Intrinsic acosh acosh MATLAB built-in

Signal Analysis
Module

Adconversion NONE NONE c2d in Control
System
Toolbox™
converts
continuous
time transfer
functions
to discrete
time transfer
functions.

A-21

A Conversions

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Control Design
Module

afeedback NONE NONE

Xmath aiginterp NONE NONE

Xmath alias NONE NONE

Intrinsic all all MATLAB built-in

Control Design
Module

append append Control System
Toolbox

See also the
daug function
in Robust Control
Toolbox™.

Xmath argn nargin,
varargin,
varargout

MATLAB built-in

MATRIXxD arma ar System
Identification
Toolbox™

MATRIXxD armax armax System
Identification
Toolbox

MATRIXxD arma2ss NONE NONE No arma objects
in MATLAB.

Intrinsic ascii ascii MATLAB built-in

Intrinsic asin asin MATLAB built-in Defined from
-1 to 1 in Xmath;
MATLAB returns
complex value.

Intrinsic asinh asinh MATLAB built-in

Intrinsic atan atan MATLAB built-in

Intrinsic atanh atanh MATLAB built-in

Intrinsic atan2 atan2 MATLAB built-in

SystemBuild autocode rtwbuild Simulink Coder

A-22

MATRIXx® Feature to MathWorks® Feature Mapping

B

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Signal Analysis
Module

backdiff c2d Control System
Toolbox

Model Reduction
Module

balance ssbal Control System
Toolbox

Model Reduction
Module

balmoore balreal Control System
Toolbox

Signal Analysis
Module

bandpass fdatool Signal Processing
Toolbox™

Use MATLAB
GUI for general
filter design and
select bandpass.

Signal Analysis
Module

bandstop fdatool Signal Processing
Toolbox

Use MATLAB
GUI for general
filter design and
select bandstop.

Intrinsic beep beep MATLAB MATLAB beep
does not display
a message.

MATRIXxD bj bj System
Identification
Toolbox

Xμ Module blkbal balance MATLAB

Xμ Module blknorm norm MATLAB

Control Design
Module

bode bode Control System
Toolbox

MATRIXxD bpm2inn ssdata System
Identification
Toolbox

Model Reduction
Module

bst bstmr Robust Control
Toolbox

A-23

A Conversions

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic build Simulink Simulink

Signal Analysis
Module

buttconstr butter Signal Processing
Toolbox

Signal Analysis
Module

butterworth butter Signal Processing
Toolbox

C

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Signal Analysis
Module

cancel NONE NONE

MATRIXxD canform canform System
Identification
Toolbox

SystemBuild catalog (main) NONE Simulink Simulink does
not have an
equivalent
catalog browser.

Signal Analysis
Module

ccepstrum cceps MATLAB built-in

Intrinsic char char MATLAB built-in

Signal Analysis
Module

chebconstr cheb1ord
andcheby1 or
cheb2ord and
cheby2

Signal Processing
Toolbox

Use chebxord to
get the lowest
filter order
and natural
frequency, and
then use chebyX
to generate a
filter.

Signal Analysis
Module

chebyshev cheby1, cheby2 Signal Processing
Toolbox

A-24

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic check exist MATLAB built-in

Basic chop
a = [.1,.5,.9];
a(abs(a)<tol)
= 0

No built-in
function. Use
example and
enter tolerance
(tol).

Signal Analysis
Module

circonv cconv Signal Processing
Toolbox

Signal Analysis
Module

circorr cconv Signal Processing
Toolbox

Intrinsic clock clock, or tic and
toc

MATLAB built-in Use clock to
return time
and date. Use
tic and toc to
calculate elapsed
time.

Robust Control
Module

clsys des2ss Robust Control
Toolbox

Signal Analysis
Module

coherence cohere Signal Processing
Toolbox

Basic colorind cdata— variable
input to fcn

MATLAB
Variable

Signal Analysis
Module

combinePF residue MATLAB Use three input
arguments form.

Xmath Command (*.mfc) Function
MATLAB file
(*.m)

MATLAB Function
MATLAB files
create their own
workspace.

Intrinsic comment % MATLAB built-in Everything after
% is treated as a
comment.

A-25

A Conversions

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic commentof NONE NONE You cannot place
a comment on
a variable or a
workspace in
MATLAB.

Intrinsic # % MATLAB built-in Everything after
% is treated as a
comment.

Intrinsic Complex number
— jay

i or j MATLAB built-in

Intrinsic condition cond MATLAB

Intrinsic conj conj conj

Control Design
Module

connect connect Control System
Toolbox

Xμ Module conpdm struct MATLAB built-in Structures are
the closest thing
to a PDM in
MATLAB.

Xμ Module consys
ss([],[],[],
[1 2;3 4])

Control System
Toolbox

Model Reduction
Module

controllable ctrb and ctrbf Control System
Toolbox

ctrb and ctrbf
return how
controllable the
system is.

Intrinsic colvolve conv MATLAB

Basic copyfile !copy
path_to_orig_file
path_to_new_location

MATLAB built-in Use ! (bang)
to access the
operating system
and copy a file.

Signal Analysis
Module

correlate xcorr Signal Processing
Toolbox

A-26

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic cos cos MATLAB built-in

Intrinsic cosh cosh MATLAB built-in

Intrinsic cosm NONE MATLAB

Intrinsic cot cot MATLAB

Intrinsic coth coth MATLAB

Basic covariance cov MATLAB

Intrinsic csc csc MATLAB

Intrinsic csch csch MATLAB

Basic csum cumsum MATLAB built-in

MATRIXxD ctrcf idss System
Identification
Toolbox

Xμ Module ctrlplot bode, nichols,
nyquist, sigma

Control System
Toolbox

D

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Xμ Module daug daug Robust Control
Toolbox

Signal Analysis
Module

dbtolin NONE NONE MATLAB does
not have db units.
You can create
db units using
MATLAB objects.

Intrinsic debug dbstop MATLAB Debugger is also
built into the
MATLAB editor.

A-27

A Conversions

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Signal Analysis
Module

decimate decimate Signal Processing
Toolbox

Intrinsic default NONE NONE

Control Design
Module

deffreqrange NONE Signal Processing
Toolbox

Intrinsic define NONE NONE Placing a
function in a
toolbox directory
will have it
parsed only when
MATLAB starts.

Control Design
Module

deftimerange NONE NONE

Basic delaunay delaunay MATLAB

Signal Analysis
Module

delay NONE NONE

Intrinsic delete clear, clear
all, and so forth

MATLAB built-in

Xμ Module delsubstr strrep MATLAB built-in

Basic demo demo MATLAB

Intrinsic det det MATLAB built-in

Signal Analysis
Module

detrend detrend MATLAB

Signal Analysis
Module

dht gallery MATLAB gallery has an
option (k=5) that
specifies Hartley
transform.

Intrinsic diagonal diag MATLAB built-in

A-28

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Basic directory whos MATLAB built-in Type x = whos to
get the variables
in the current
workspace.

Control Design
Module

discretize c2d Control System
Toolbox

Intrinsic display display, disp MATLAB built-in

Signal Analysis
Module

divide NONE NONE MATLAB
does not have
polynomial
objects. You can
use tf to create a
transfer function
object.

Intrinsic domain NONE NONE PDMs do
not exist in
MATLAB.

Basic dsearch dsearch MATLAB

E

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic echo echo MATLAB built-in

Intrinsic eig eig MATLAB built-in

Signal Analysis
Module

ellipconstr ellip Signal Processing
Toolbox

Signal Analysis
Module

elliptic ellip Signal Processing
Toolbox

Intrinsic erase clc, clear, clf,
cla

MATLAB

A-29

A Conversions

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic error error MATLAB built-in

Control Design
Module

estimator estim MATLAB built-in

MATRIXxD etfe etfe System
Identification
Toolbox

Intrinsic execute eval MATLAB built-in

Intrinsic exist exist MATLAB built-in

Intrinsic exit break MATLAB built-in Entering exit
in MATLAB will
end your session.

Intrinsic exp exp MATLAB built-in

Intrinsic expm expm MATLAB built-in

Intrinsic eye eye MATLAB built-in

F

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic fft fft, fft2 MATLAB

Signal Analysis
Module

fftpdm fft

Signal Analysis
Module

filter filter Signal
Processing
Toolbox

Intrinsic find find

A-30

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Signal Analysis
Module

firparks remez Signal
Processing
Toolbox

remez designs a
linear-phase FIR
filter using the
Parks-McClellan
algorithm. The
Parks-McClellan
algorithm uses
the Remez
exchange algorithm
and Chebyshev
approximation
theory.

Signal Analysis
Module

firremez remez Signal
Processing
Toolbox

remez designs a
linear-phase FIR
filter using the
Parks-McClellan
algorithm. The
Parks-McClellan
algorithm uses
the Remez
exchange algorithm
and Chebyshev
approximation
theory.

Signal Analysis
Module

firwind fir1 Signal
Processing
Toolbox

Xμ Module fitsys for Robust Control
Toolbox

Intrinsic for for MATLAB
built-in

Signal Analysis
Module

forwdiff c2d Control System
Toolbox

A-31

A Conversions

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic fprintf fprintf MATLAB
built-in

Basic frac
a=rand(3);
b=mod(a,1)

MATLAB

Intrinsic freq freqresp Control System
Toolbox

Signal Analysis
Module

freqcircle MATLAB

Signal Analysis
Module

freqcont freqresp Control System
Toolbox

G

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

GUI gdmessage questdlg MATLAB

Intrinsic get get MATLAB
built-in

Comparison of
MATRIXx of the
environment
variables is
difficult.

Intrinsic getchoice NONE MATLAB
built-in

Create a GUI using
uicontrol.

LNX function getenviron NONE NONE Use ! (bang) with
system commands.

Basic getfile uigetfile MATLAB
built-in

Intrinsic getline inputdlg MATLAB

Intrinsic go dbcont MATLAB
built-in

A-32

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic goto NONE NONE

Signal Analysis
Module

gqam amod Communications
System
Toolbox™

qam is one of
the options to be
passed to amod.

Basic griddata griddata MATLAB MATLAB contains
additional
methods.

Signal Analysis
Module

gsin NONE NONE Construct matrix
or structure with
basic commands.

Xμ Module gstep NONE NONE Construct matrix
or structure with
basic commands.

H

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Model Reduction
Module

hankelsv hank2sys Communications
System Toolbox

The hank2sys
function does not
plot a bar graph.

Basic hardcopy print MATLAB

Intrinsic help help MATLAB built-in

Intrinsic hessenberg hess MATLAB built-in

Signal Analysis
Module

highpass NONE NONE Design a new
filter (fir1, fir2,
sptool, and so
forth).

Basic hilbert hilb MATLAB

Robust Control
Module

hinfcontr ncfsyn Robust Control
Toolbox

A-33

A Conversions

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Xμ Module hinfnorm hinfnorm Robust Control
Toolbox

Xμ Module hinfsyn hinfsyn Robust Control
Toolbox

Basic histogram hist MATLAB

Xμ Module h2norm h2norm Robust Control
Toolbox

Xμ Module h2syn h2syn Robust Control
Toolbox

I

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

MATRIXxD idfreq freqresp System
Identification
Toolbox

MATRIXxD idimpulse impulse System
Identification
Toolbox

Use impulse
from System
Identification
Toolbox on an
idmodel or iddata
object.

MATRIXxD idsim sim System
Identification
Toolbox

Use sim
from System
Identification
Toolbox on an
idmodel or
iddata object.

Intrinsic if if MATLAB built-in

Intrinsic ifft ifft MATLAB

Intrinsic imag imag MATLAB built-in

A-34

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic impinvar impinvar Signal Processing
Toolbox

Control Design
Module

impulse impulse Control System
Toolbox

Intrinsic index findstr MATLAB built-in findstr finds all
instancse of the
string not only
the first instance.

Intrinsic indexlist cell MATLAB built-in MATLAB does
not have indexed
lists. Use cell
arrays instead.

Intrinsic initial initial Control System
Toolbox

MATRIXxD initmodel pem System
Identification
Toolbox

InitialState
property of the
pem function.

MATRIXxD initx0 pem System
Identification
Toolbox

Value of
'Estimate' for
InitialState of
the pem function.

MATRIXxD inn2pe pe System
Identification
Toolbox

Intrinsic int fix MATLAB built-in

A-35

A Conversions

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Basic integrate quad, quadl MATLAB MATLAB
computes the
integral over a
given region.
There is symbolic
integration using
int from the
Symbolic Math
Toolbox™.

Signal Analysis
Module

impplot impz Signal Processing
Toolbox

Xμ Module interp trsp,dtrsp Robust Control
Toolbox

Basic interpolate interp1,
interp2,
interp3,
interpn

MATLAB Xmath function
maps to a PDM.
Determine
what dimension
interpolation
you want to
implement.

Intrinsic inv inv MATLAB built-in

Basic ipcwc invhilb MATLAB

Intrinsic ipcwc NONE NONE The MATLAB
engine or
MATLAB
MEX-files run
C or Fortran code
with MATLAB
functionality.
These
functions run
independently of
the contents of
the MATLAB

A-36

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Command
Window.

MATRIXxD irea imp2ss Robust Control
Toolbox

Intrinsic is is* MATLAB built-in Forms include
iscell,
iscellstr,
ischar, isempty,
isequal,
isfield,
isfinite, isnan,
and so forth.

J
No functions begin with J.

K

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic keep NONE NONE

Intrinsic kronecker kron MATLAB

L

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic length prod(size(x)) MATLAB built-in

Basic licensecheckout NONE NONE MATLAB
automatically
checks out license
for the toolbox
you are using.

A-37

A Conversions

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Basic licensefile NONE NONE

Basic licenseinfo NONE NONE

Basic licenseuser NONE NONE

SystemBuild lin linmod Simulink

Signal Analysis
Module

linearfm chirp Signal Processing
Toolbox

chirp is similar
but not exactly
the same as
linearfm .

Robust Control
Module

linfnorm norm Control System
Toolbox

SystemBuild linksim NONE NONE Before running
model (use
mex function),
compile MEX-file
S-function into
*.dll .

Signal Analysis
Module

lintodb NONE Signal Processing
Toolbox

Intrinsic list cell MATLAB built-in

SystemBuild listusertype NONE NONE No user-defined
variable types in
MATLAB.

Intrinsic load load MATLAB built-in

Intrinsic lock NONE MATLAB Use persistent
and mlock
together to get
similar results to
lock.

Intrinsic log log MATLAB built-in

Intrinsic logm logm MATLAB

A-38

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Signal Analysis
Module

lognormal lognrnd Statistics See also logncdf,
logninv,
lognpdf, and
lognstat.

Intrinsic logspace logspace MATLAB

Intrinsic log10 log10 MATLAB built-in

Signal Analysis
Module

lowpass fir1, fir2 Signal Processing
Toolbox

See also sptool,
fdatool, and so
forth.

Optimization
Module

lpopt fmincon Optimization
Toolbox™

See also linprog
and lsqlin.

Control Design
Module

lqgcomp reg Control System
Toolbox

Robust Control
Module

lqgltr ltru Robust Control
Toolbox

ltru is similar
but not the same
as lqgltr .

Intrinsic lu lu MATLAB built-in

Control Design
Module

lyapunov lyap, dlyap Control System
Toolbox

M

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Control Design
Module

makecontinuous d2c

Intrinsic makematrix str2num and
str2mat

A-39

A Conversions

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic makepoly NONE NONE Polynomials in
MATLAB are
represented as
vectors.

Control Design
Module

margin margin Control System
Toolbox

Signal Analysis
Module

markoff NONE NONE

Signal Analysis
Module

matchedpz c2d Control System
Toolbox

Intrinsic max max MATLAB built-in For matrices, use
max(mymatrix(:)).

MATRIXxD maxlike NONE NONE

Basic mean mean MATLAB For matrices, use
max(mymatrix(:)).

Xμ Module mergeseg NONE NONE

Intrinsic min min - For matrices, use
min(mymatrix(:)).

Model Reduction
Module

minimal NONE NONE

Xμ Module mkpert dypert Robust Control
Toolbox

Xμ Module mkphase genphase Robust Control
Toolbox

Intrinsic mod mod rem MATLAB Use mod to
get modulus.
Use rem to get
remainder.

Model Reduction
Module

modal NONE NONE

A-40

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Xμ Module modalstate NONE NONE

Signal Analysis
Module

modcarrier amod Communications
System Toolbox

Model Reduction
Module

mreduce NONE NONE

MATRIXxD mtxplt subplot MATLAB built-in

Xμ Module mu mu Robust Control
Toolbox

Model Reduction
Module

mulhank hankmr Robust Control
Toolbox

Xμ Module musynfit musynfit Robust Control
Toolbox

N

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic names fieldnames MATLAB

Intrinsic new MATLAB and
Functions
workspaces

MATLAB

Intrinsic next Visual debugging MATLAB

Control Design
Module

nichols nichols Control System
Toolbox

Intrinsic none all MATLAB built-in

Intrinsic norm norm MATLAB built-in

Intrinsic numden nyquist Control System
Toolbox

Control Design
Module

nyquist nyquist Control System
Toolbox

A-41

A Conversions

O

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Model Reduction
Module

observable obsv Control System
Toolbox

SystemBuild ODASSL
Integration

Stiff Solver —
ode15s, ode23s,
ode23t, ode23tb

Simulink

MATRIXxD oe oe System
Identification
Toolbox

Intrinsic ones ones MATLAB built-in ones in
MATLAB with
only one input
makes a square
matrix of ones.

Intrinsic Operators (and
PDMs)

Operators (and
Structs)

MATLAB built-in Cannot perform
math operations
on structures in
MATLAB; you
must index into
them.

Intrinsic operators
(Xmath)

See Operator
Variable
Conversion
mapping

MATLAB built-in

Model Reduction
Module

ophank ohklmr Robust Control
Toolbox

Optimization
Module

optimize lsqnonlin Optimization
Toolbox

See also linprog
and fsolve.

Signal Analysis
Module

orderfilt Signal Processing
Toolbox

See medfilt1,
medfilt2, mean,
Median, Minimum,
Maximum.

A-42

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Xμ Module orderstate NONE Control System
Toolbox

Basic orth orth MATLAB

Intrinsic oscmd ! or dos orunix MATLAB built-in

Robust Control
Module

osscale osborne Robust Control
Toolbox

SystemBuild Overconstrained
DASSL

Stiff Solver —
ode15s, ode23s,
ode23t, ode23tb

Simulink Except for
constrained
DAE problems,
integration
results from
ODASSL and
DASSL are the
same.

P

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Signal Analysis
Module

padcrop NONE MATLAB Index into vector,
or concatenate
zeros onto the
ends.

Signal Analysis
Module

partialsum cumsum MATLAB

Intrinsic pause pause MATLAB

Intrinsic pdm struct MATLAB built-in

Basic pdmplot NONE MATLAB built-in

Signal Analysis
Module

pdmslice b=a(:,:,n)
%Index into a
3–D array

MATLAB built-in

A-43

A Conversions

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

MATRIXxD pem rpem System
Identification
Toolbox

Robust Control
Module

pfscale ssv Robust Control
Toolbox

Xmath pgui guide MATLAB

Signal Analysis
Module

phaseshift NONE NONE

Constant pi pi MATLAB built-in

Intrinsic pinv pinv MATLAB

Basic plot plot, plot3 MATLAB

Basic aliases Write a script MATLAB

Basic animation getframe, movie

Basic Bar plots bar, barh MATLAB

Basic erase clf, cla MATLAB

Basic Graph object handle MATLAB

Basic Grids and graph
lines

grid on, grid
off

MATLAB

Basic Holding plot
options

Use Handle
Graphics to set
default stye you
want

MATLAB

Basic HPGL output print -dhpgl MATLAB

Basic keeping hold on, hold
off

MATLAB

A-44

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Basic labelling title, xlabel,
ylabel, zlabel,
legend,
xticklable,
yticklabel,
zticklabel

MATLAB

Basic Light source light MATLAB

Basic Line styles Use handle
graphics to set
line properties

MATLAB

Basic logarithmic loglog,
semilogx,
semilogy

MATLAB

Basic Marker styles Specify CLM
in the plot
command;
plot(1:10,1:10,'k-*')

MATLAB

Basic Multiple plots subplot MATLAB

Basic Positioning
objects

Use handle
graphics;
set(gca,
'position',
[.5 2 4 1]);

MATLAB

Basic projection camproj MATLAB

Basic Resetting
defaults

Set defaults
using Handle
Graphics

MATLAB

Basic rotate and
angle

rotate MATLAB

Basic scale Use Handle
Graphics to set
DataAspectRatio

MATLAB

A-45

A Conversions

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Basic Scaling axes xlim, ylim, zlim MATLAB

Basic Setting colors Handle Graphics MATLAB

Basic strip
a=rand(8,4);
for i=1:4;
subplot(4,1,i);
plot(a(:,i));
end

MATLAB

Basic templates Use Handle
Graphics to set
defaults

MATLAB

Basic Text position or
style

text, gtext MATLAB

Basic Tic marks Tic properties of
Handle Graphics

MATLAB

Basic zooming zoom MATLAB

Signal Analysis
Module

pmdemod demod Signal Processing
Toolbox

Signal Analysis
Module

poisson poissrnd or
poisscdf

Statistics Functions are
very similar to
each other.

Basic Polar Plots polar MATLAB

Control Design
Module

poleplace place Control System
Toolbox

Control Design
Module

poles pole Control System
Toolbox

MATRIXxD polezero pzmap Control System
Toolbox

MATRIXxD poltrend detrend System
Identification
Toolbox

A-46

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Basic polyfit polyfit MATLAB

Intrinsic polynomial MATLAB
represents
polynomials as
row vectors

MATLAB

Basic polyval polyval MATLAB

Basic polyvalm polyvalm MATLAB

MATRIXxD prbs idinput System
Identification
Toolbox

Intrinsic print save MATLAB built-in

Intrinsic product prod(x(:)) MATLAB built-in

Q

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

GUI qplot plot, set, and
get

MATLAB No direct
function map.
See plot, set,
and get.

Optimization
Module

qpopt quadprog Optimization
Toolbox

Intrinsic qr qr MATLAB built-in

SystemBuild QuickSim
integration

NONE NONE Use ode45 for
systems such as
this system.

Intrinsic quit quit or exit MATLAB built-in

Intrinsic qz qz MATLAB built-in

A-47

A Conversions

R

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Signal Analysis
Module

rampinvar c2d Control System
Toolbox

Intrinsic random rand, randn MATLAB built-in

Xμ Module randpdm NONE NONE PDMs do
not exist in
MATLAB.

Xμ Module randpert randel Robust Control
Toolbox

Xμ Module randsys sysrand Robust Control
Toolbox

Intrinsic rank rank MATLAB

Signal Analysis
Module

rcepstrum rceps Signal Processing
Toolbox

Intrinsic rcond rcond MATLAB built-in MATRIXx
uses LINPACK;
MATLAB uses
LAPACK.

Signal Analysis
Module

rdintegrate quad MATLAB

Intrinsic read load MATLAB built-in See also
textread,
dlmread, or
fscanf.

xms read_rawfile NONE NONE

LNX function read_sv textread MATLAB

Intrinsic real real MATLAB built-in

A-48

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Model Reduction
Module

redschur bstschmr,
bstschml, schmr

Robust Control
Toolbox

Use bstmr to
put in Schur
balanced form,
and then one of
the reduction
fcns in Robust
Control Toolbox.

MATRIXxD reflect polystab Signal Processing
Toolbox

Xmath refnum License Number MATLAB

Control Design
Module

regulator reg Control System
Toolbox

Intrinsic remove NONE NONE

Signal Analysis
Module

residue residue MATLAB

Intrinsic return return MATLAB built-in

Control Design
Module

riccati are Control System
Toolbox

are is an obsolete
function.

Xμ Module riccati_eig ric_eig Robust Control
Toolbox

Xμ Module riccati_schur ric_schr Robust Control
Toolbox

Signal Analysis
Module

ricean NONE NONE

Xμ Module rifd NONE NONE

Intrinsic rlinfo NONE NONE

Control Design
Module

rlocus rlocus Control System
Toolbox

Control Design
Module

rms NONE NONE

A-49

A Conversions

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic rootlocus rlocus Control System
Toolbox

Intrinsic roots roots MATLAB Different output
order from each
other.

Intrinsic round round, ceil, and
fix

MATLAB built-in

Basic rref rref MATLAB

S

Xmath
Module

MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic save save MATLAB
built-in

Intrinsic schur schur MATLAB
built-in

Xmath Script files
(*.ms)

Script file (*.m) MATLAB
built-in

Script executes as if
you typed commands
at the MATLAB
command prompt.
Uses MATLAB
workspace.

MATRIXxD sdf psd Signal
Processing
Toolbox

MATRIXxD sds n4sid System
Identification
Toolbox

Xμ Module sdtrsp sdtrsp Robust Control
Toolbox

Intrinsic sec sec MATLAB

A-50

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath
Module

MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic sech sech MATLAB

Xmath Selecting
Graphic Objects

get MATLAB
built-in

Use get and the
objects handle to
select the object. Use
set to modify the
object.

Intrinsic set
autocompile

Toolbox caching MATLAB
built-in

Set capability in the
MATLAB preferences.

Intrinsic set break dbstop in
MATLAB file
at line number

MATLAB
built-in

Intrinsic set buffering NONE MATLAB Once an output
is available, it is
displayed.

Intrinsic set build NONE Simulink When you type
the model name,
Simulink opens.

Intrinsic set
commanddiary

diary MATLAB
built-in

diary on and diary
offwill begin and end
a diary session.

Intrinsic set
debugonerror

dbstop if error MATLAB
built-in

Intrinsic set directory cd
path_to_directory

MATLAB
built-in

cd will change
directories in
MATLAB in the same
way that cd works
in DOS or Linux
operating systems.

A-51

A Conversions

Xmath
Module

MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic set display NONE MATLAB Once an output
is available, it is
displayed, unless a
semicolon is placed at
the end of the line of
code.

Intrinsic set
distribution

rand— uniform
distribution
randn— normal
distribution

MATLAB
built-in

Intrinsic set echo echo MATLAB
built-in

Explicitly turn echo
on and echo off in
your MATLAB files.

Intrinsic set format format
format_option

MATLAB
built-in

Format options —
short, long, short e,
long e, short g, long
g, hex, +, bank, rat,
compact, loose.

Intrinsic set logarea NONE MATLAB

Intrinsic set path addpath,
rmpath, path

MATLAB

Intrinsic set partition dbup, dbdown MATLAB
built-in

You can use db*
functions while
debugging.

Intrinsic set pause NONE MATLAB All pause commands
will be executed.

Intrinsic set
precMATRIXxon

format

format_option

MATLAB
built-in

Format options —
short, long, short e,
long e, short g, long
g, hex, +, bank, rat,
compact, loose.

A-52

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath
Module

MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic set seed rand— uniform
distribution

randn— normal
distribution

MATLAB
built-in

Enter seed in the
function call.

Intrinsic set
sessionDiary
or set
commandDiary

diary MATLAB
built-in

diary on and diary
offwill begin and end
a diary session.

Intrinsic set timeStamp NONE MATLAB MATLAB does not
save a timestamp
with its variables.

Intrinsic set uiupdate NONE MATLAB MATLAB does not
have an equivalent
option to stop updates.

Intrinsic set watch NONE MATLAB MATLAB does not
have an equivalent
option to monitor
a variable during
debugging.

xms setsbdefault NONE Simulink You cannot
change the default
preferences in
Simulink.

Intrinsic show NONE

Intrinsic show
buffering

NONE MATLAB Once an output
is available, it is
displayed.

Intrinsic show
commanddiary

get(0,
'Diary')

MATLAB

Intrinsic show commands NONE MATLAB

Intrinsic show
directory

cd, pwd MATLAB
built-in

A-53

A Conversions

Xmath
Module

MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic show display NONE MATLAB Once an output
is available, it is
displayed, unless a
semicolon is placed at
the end of the line of
code.

Intrinsic show
distribution

NONE MATLAB
built-in

Use different
functions for different
distributions — rand
(uniform) and randn
(normal).

Intrinsic show echo get(0,
'Echo')

MATLAB

Intrinsic show format get(0,
'Format')

MATLAB

Intrinsic show
functions

NONE MATLAB

Intrinsic show debug dbstack MATLAB

Intrinsic show
debugonerror

NONE MATLAB In the MATLAB
Editor, from the
Breakpoints menu,
choose Stop on
Errors.

Intrinsic show logarea NONE MATLAB

Intrinsic show
partition

dbup, dbdown,
and whos

MATLAB
built-in

You can use db*
functions while
debugging.

Intrinsic show
partitions

dbup, dbdown,
and whos

MATLAB You can db* functions
can while debugging.

Intrinsic show path path MATLAB

Intrinsic show
precMATRIXxon

get(0,
'Format')

MATLAB

A-54

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath
Module

MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic show seed NONE MATLAB Seed is entered in the
function calls.

Intrinsic show
sessiondiary

get(0,
'Diary')

MATLAB
built-in

Intrinsic show
variables

who, whos MATLAB

Intrinsic show uiupdate NONE Simulink

xms showsbdefault NONE Simulink You cannot
change the default
preferences in
Simulink.

Intrinsic sign sign MATLAB
built-in

xms sim function sim MATLAB
built-in

xms simout [sizes,x0,xord]
=
Simulink_Model_Name

Simulink

Xμ Module simtransform ss2ss Control System
Toolbox

See also ss in Control
System Toolbox.

Intrinsic sin sin MATLAB
built-in

Robust Control
Module

singriccati aresolv Robust Control
Toolbox

Intrinsic sinh sinh MATLAB
built-in

Intrinsic sinm NONE MATLAB

Intrinsic size size MATLAB
built-in

A-55

A Conversions

Xmath
Module

MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Robust Control
Module

smargin ncfsyn Robust Control
Toolbox

Basic sns2sys ss Control System
Toolbox

Intrinsic sort sort MATLAB
built-in

Xμ Module spectrad vrho Robust Control
Toolbox

Signal Analysis
Module

spectrum pwelch Signal
Processing
Toolbox

Basic spline spline MATLAB

Intrinsic sprintf sprintf MATLAB
built-in

Intrinsic sqrt sqrt MATLAB
built-in

Intrinsic sqrtm sqrtm MATLAB

Robust Control
Module

ssv ssv Robust Control
Toolbox

MATRIXxD ss2arma NONE NONE MATLAB does not
have arma objects.

Basic stable NONE Control System
Toolbox

Intrinsic stair NONE Control System
Toolbox

Xμ Module starp starp Robust Control
Toolbox

Xmath Startup file Startup file MATLAB User-created file that
executes on startup.

A-56

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath
Module

MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Control Design
Module

step step Control System
Toolbox

Signal Analysis
Module

stepinvar c2d Control System
Toolbox

Intrinsic stop !kill -9
(Linux only)

MATLAB
built-in

Use ! (bang) to access
the operating system.

Intrinsic string num2str,
int2str, and
mat2str

MATLAB

Intrinsic stringex strrep MATLAB

Xμ Module substr strtok MATLAB

Signal Analysis
Module

subsys c2d Control System
Toolbox

SystemBuild subsystems NONE Simulink Simulink subsystems
are analogous to
SuperBlocks.

Intrinsic sum sum MATLAB

Intrinsic svd svd MATLAB
built-in

Model
Reduction
Module

svplot NONE Control System
Toolbox

MATRIXxD sweep chirp Signal
Processing
Toolbox

Signal Analysis
Module

symbolmap base2dec,
dec2base

MATLAB See also hex2num,
hex2dec, dec2hex,
bin2dec, and
dec2bin.

Xμ Module sysic sysic Robust Control
Toolbox

A-57

A Conversions

Xmath
Module

MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic system ss, tf, or zpk Control System
Toolbox

SystemBuild SystemBuild Simulink Simulink

Basic sys2sns NONE Control System
Toolbox

T

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic tan tan MATLAB built-in

Intrinsic tanh tanh MATLAB built-in

MATRIXxD taper Signal Processing
Toolbox

Use one of
the following:
bartlett,
blackman,
rectwin,
chebwin,
hamming, hann,
kaiser and
triang.

Intrinsic toeplitz toeplitz MATLAB

Intrinsic trace trace MATLAB

Intrinsic tril tril MATLAB built-in

SystemBuild trim trim Simulink

Intrinsic triu triu MATLAB built-in

Xμ Module trsp trsp Robust Control
Toolbox

Model Reduction
Module

truncate sysls and
hankmr

Robust Control
Toolbox

A-58

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Basic tsearch tsearch MATLAB

Signal Analysis
Module

tustin c2d Control System
Toolbox

U

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic uiButton Button style in
uicontrol

MATLAB
built-in

Intrinsic uiComboBox Popup style in
uicontrol

MATLAB
built-in

Intrinsic uiDestroy close MATLAB
built-in

close closes
current figure.

close('name')
closes named
figure.

close(h) closes
figure with
handle h.

Intrinsic uiExist findobj MATLAB
built-in

Intrinsic uiFileSelection uigetfile MATLAB
built-in

Intrinsic uiFlush drawnow MATLAB
built-in

Intrinsic uiGetValue get MATLAB
built-in

Intrinsic uiHandle get MATLAB
built-in

A-59

A Conversions

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic uiHide set MATLAB
built-in

Intrinsic uiLabel Text style in
uicontrol

MATLAB

Intrinsic uiList List box style in
uicontrol

MATLAB

Intrinsic uiMenu uimenu MATLAB
built-in

Intrinsic uiMenuItem uimenu MATLAB
built-in

Intrinsic uiMessage msgbox MATLAB

Intrinsic uiPanel Frame style in
uicontrol

MATLAB
built-in

Intrinsic uiPlot plot and
subplot

MATLAB
built-in

Intrinsic uiPlotArea plot and
subplot

MATLAB

Intrinsic uiPlotGet ginput MATLAB

Intrinsic uiPrompt inputdlg MATLAB

Intrinsic uiSeparator NONE NONE

Intrinsic uiSetValue set MATLAB
built-in

Intrinsic uiShow set MATLAB
built-in

Intrinsic uiSlider slider style in
uicontrol

MATLAB
built-in

Intrinsic uiTab tabdlg MATLAB

Intrinsic uiTable NONE NONE

A-60

MATRIXx® Feature to MathWorks® Feature Mapping

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic uiText Edit style in
uicontrol

MATLAB
built-in

Intrinsic uiTimer NONE NONE

Intrinsic uiToolCreate guide MATLAB

Intrinsic uiVarChoice uicontrol MATLAB
built-in

Intrinsic uiVarEdit set MATLAB
built-in

Intrinsic uiVarView set MATLAB
built-in

Intrinsic uiWindow guide MATLAB

Intrinsic uiWindowDeiconify NONE NONE

Intrinsic uiWindowIconify NONE NONE

Intrinsic uiWindowLower NONE NONE

Intrinsic uiWindowRaise NONE NONE

Intrinsic unalias NONE NONE

Intrinsic undefine NONE NONE Remove function
from the
MATLAB path.

Intrinsic unlock NONE NONE

V

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

MATRIXxD val NONE NONE

Basic variance var MATLAB

Basic version var MATLAB

A-61

A Conversions

W

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic whatis which MATLAB built-in

Intrinsic while while MATLAB built-in

Intrinsic who who, whos MATLAB built-in

Signal Analysis
Module

window fir1, fir2 Signal Processing
Toolbox

Basic write_sv dlmwrite,
csvwrite

MATLAB

Model Reduction
Module

wtbalance sfrwtbal Robust Control
Toolbox

X

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Signal Analysis
Module

xgraph plot MATLAB built-in

Xmath xmathCommand NONE NONE

Xmath XmathLoad NONE NONE

Xmath XmathSave NONE NONE

Y

No functions begin with Y.

Z

Xmath Module MATRIXx
Function

MathWorks
Function

MathWorks
Product

Notes

Intrinsic zeros zeros MATLAB built-in

A-62

MATRIXx® Feature to MathWorks® Feature Mapping

Transition Xmath Operators and Variables to MATLAB
Environment

Permanent
Variables

Xmath MATLAB Notes

precision of machine eps eps Both Xmath and
MATLAB functions
return the same value,
2.2204e-016.

global error status err N/A

largest finite number huge realmax REALMAX is four times
larger than huge.

infinity inf inf, Inf

sqrt(-1) jay i, j

Not-A-Number nan NaN

empty object null []

Pi pi pi

smallest nonzero
number

tiny realmin Both Xmath and
MATLAB functions
return the same value,
2.2251e-308.

Operators — Math
and Logical

Xmath MATLAB Notes

and & &

or | |

not ! ~

addition + +

subtraction - -

multiplication * *

right division / /

A-63

A Conversions

Operators — Math
and Logical

Xmath MATLAB Notes

left division \ \

transpose ' .'

elementwise
multiplication

.* .*

Kronecker product .*. kron

less than < <

greater than > >

less than or equal <= <=

equality == ==

not equal <> ~=

power **, ^ ^

complex conjugate
transpose

*' '

decimal . .

partition delimiter . NONE MATLAB does not
have partitions.

raise elements to a
power

.** .^

raise elements to a
power

.^ .^

Hermitian (complex
conjugate) transpose

'* NONE

indexing and
precedence

() () Index into matrix
or indicate order of
operations.

matrix construction
and concatenation

[] [] See also strcat and
strvcat for string
concatenation.

A-64

MATRIXx® Feature to MathWorks® Feature Mapping

Operators — Math
and Logical

Xmath MATLAB Notes

keyword delimeters
for functions

{} NONE

indexing : :

show output ? NONE MATLAB displays
results if a trailing
semicolon is not
present.

separator , ,

separate rows,
suppress output

; ;

ellipsis ...

equal = =

capture error === lasterr, and try,
catch

delineate string " "

insert double quote in
string

"" " MATLAB requires two
single quotes (' ') to
insert a single quote
into a string.

comment # %

block comments #{..}
#

NONE

root Xmath directory $XMATH $MATLAB

last command recall @ Command History
Window

run command @num In Command History
Window, double-click
command.

A-65

A Conversions

Operators — Math
and Logical

Xmath MATLAB Notes

run commands @num:p Highlight and run
commands from
Command History

execute the most
recent command
starting with
"str"

@str Type str, then up
arrow

list all commands
starting with
"str"

@str:l Command History
Window

list the most recent
command starting
with "str"

@str:p Command History
Window

list all commands @:l Command History
Window

execute the most
recent command

@@ Up arrow, then Enter

list the most recent
command

@@:p Up arrow, then Enter

MATRIXx and MathWorks Product Table

MATRIXx MathWorks Notes

Control Design Module Control System Toolbox

Robust Control Module Robust Control Toolbox

Optimization Module Optimization Toolbox

Signal Analysis Module Signal Processing
Toolbox

A-66

MATRIXx® Feature to MathWorks® Feature Mapping

MATRIXx MathWorks Notes

Model Reduction
Module

Robust Control Toolbox Robust Control
Toolbox provides
model-reduction
features.

Xμ Module Robust Control Toolbox

Interactive System
Identification Module

System Identification
Toolbox

System Identification
Toolbox contains
interactive features.

Interactive Control
Design Module

Control System Toolbox Control System Toolbox
contains interactive
features.

SystemBuild Simulink Fixed-point
simulation capability
is included with
SystemBuild

State Transition
Diagram Module

Stateflow State Transition
Diagram Module
provides only basic
state machine
functionality. Stateflow
provides state charts
and flow charts.

Interface for Simulink
available from Altia,
Inc.

Linux and PC platforms
supported.

Altia Design

Gauges Blockset PC only.

Interface for Simulink
available from Altia,
Inc.

Linux and PC platforms
supported.

Altia Faceplate for
SystemBuild

Gauges Blockset PC only.

A-67

A Conversions

SystemBuild Simulink Fixed-point
simulation capability
is included with
SystemBuild

HyperBuild Module Functionality is part of
Simulink

HyperBuild Module
provides only
simulation acceleration
features.

RT/Fuzzy Logic Module Fuzzy Logic Toolbox

Neural Networks
Module

Neural Network
Toolbox™

BetterState with C
Code Generator

Stateflow and
Simulink Coder

Fixed-point
simulation capability
is included with
SystemBuild

AutoCode C Single
Processor

Simulink Coder Code generation from
Stateflow requires
Simulink Coder.
Embedded Coder®

option is required for
certain applications.

C Fixed Point
Extension

Fixed-Point Toolbox™
and Simulink Fixed
Point

C Multiprocessor
Extension

N/A xPC Target™ supports
shared memory I/O
for multiprocessing
applications.

A-68

Index

IndexB
BlockScript

compiling 1-25
converting 1-25
limitations 1-38

Build menu
Compile 1-25
Partition 1-11
Unconverted blocks 1-39

build options 1-13

C
compatibility 1-34
compiling BlockScript 1-25
componentization 1-27
conversions

default results 1-23
strategies 1-27

converting
blocks not converted 1-39
BlockScript 1-25
models to Simulink 1-22
SuperBlocks 1-39

F
file manager 1-10
format

model requirements 1-39
SystemBuild models 1-7

formatting
reports 1-18

G
generating

models 1-22
reports 1-26

I
installation 1-3

L
library 1-34
limitations 1-38
loading a model 1-8

M
main GUI 1-7
model tree structure 1-10
modeling styles

native Simulink 1-32
models

format 1-39
generating 1-22
loading 1-8
saving 1-26

O
opening SB2SL 1-7
options

build 1-13
reports

formatting 1-18
generating 1-16

translation 1-13

P
partitions

selecting 1-11

R
referenced models

Normal mode 1-37
replace_block 1-40

Index-1

Index

reports
formatting 1-18
generating 1-26
options 1-16
specifying 1-18

requirements 1-3

S
saving

model data 1-26
Simulink models 1-26

SB2SL
blocks not converted 1-40
compatibility with SystemBuild 1-34
conversion 1-22
installation 1-3
limitations 1-7
main GUI 1-7
models, loading 1-8
opening 1-7
requirements 1-3
Simulink library 1-34
Windows menu, tree 1-10

SB2SL translation 1-22
selecting

partitions 1-11
SuperBlocks 1-10

Simulink library 1-34
Simulink models

options 1-13
saving 1-26

Simulink Normal mode 1-37
Source Files window 1-25
specifying reports 1-18
SuperBlocks

conversion 1-22
file manager 1-10
partitions, selecting 1-11
selecting 1-10
translation 1-22
tree structure 1-10

SystemBuild models
format 1-7

T
translation

options 1-13
SuperBlocks, of 1-22

W
Windows menu

tree 1-10

Index-2

	toc
	Converting SystemBuild SuperBlocks to Simulink Models
	Introduction
	What Is SB2SL?
	Software Requirements
	Installation

	Optional Step to Convert to Simulink with SB2SL
	Use SB2SL
	Prepare the Model for Conversion
	Start SB2SL
	Load a SystemBuild Model into SB2SL
	Select SystemBuild SuperBlocks
	Select a SuperBlock Partition for Conversion
	Set Translation Options
	Translation Build Options
	Report Generation Options
	Report Formatting Options
	Window Preferences

	Convert SuperBlocks to Simulink Models
	Default Conversion Results

	Compile Converted BlockScript
	Save Translated Models and Data
	Generate a Report

	Conversion Strategies
	Componentization
	Unconverted SuperBlocks

	Improve Signal Line Wiring Results
	Wiring Cleanup Tips

	Silence Unconnected Port Warnings
	Migrate to a Native Simulink Modeling Style

	Compatibility Between SystemBuild and Simulink Software
	Introduction
	SB2SL Simulink Library
	Simulink Coder Software and Converted SB2SL Models
	Referenced Models in Normal Mode with Converted SB2SL Models

	Limitations
	Unsupported Conversions
	File Format Support
	Blocks Not Converted to Simulink Models
	Suggestions for Handling Unconverted Blocks

	Suggestions for Handling UserCode Blocks
	Use the S-Function Builder Block to Convert Simple UserCode Bloc
	Manually Convert More Complex UserCode Block Code
	Convert UserCode Block Fortran Code

	Function Reference
	Conversions
	MATRIXx Feature to MathWorks Feature Mapping
	Corresponding SystemBuild and Simulink Blocks
	Transition SystemBuild Access Commands to MATLAB and Simulink
	Transition SystemBuild Blocks to Simulink
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Transition Xmath to MATLAB
	Transition Xmath Functions to MATLAB
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Transition Xmath Operators and Variables to MATLAB Environment

	MATRIXx and MathWorks Product Table

	Index

